高速クラスターイオンビームと有機材料との相互作用を利用したナノ材料の 創成とイオントラックの可視化

Development of Nanomaterials and Visualization of Ion Tracks through Interactions between Cluster Ion Beams and Organic Materials

櫻井庸明 A), 堀尾明史 A), 香山一登 A), 千葉敦也 B), 斎藤勇一 B), 鳴海一雅 B), 関 修平 A)

Tsuneaki Sakurai ^{A)}, Akifumi Horio ^{A)}, Atsuya Chiba ^{B)}, Yuichi Saito, ^{B)} Kazumasa Narumi, ^{B)} Shu Seki ^{A)}

^{A)} Graduate School of Engineering, Kyoto University

^{B)} Takasaki Radiation Institute

Abstract

This template was prepared in order to describe a paper in Japanese. If you write texts in this .docx file directly, you can complete a paper easily by MS-Word. When you change the completed paper into PDF, please be sure to embed all the fonts. The number of pages of a paper must be 3 pages and more.

Keyword: cluster ions, soft material, nanostructure

1. イオントラックの可視化

1.1 クラスターイオンと有機物との相互作用

本サブグループでは、種々のクラスターイオン、特に C₆₀ クラスターイオンと有機材料との相互作用 の可視化を目指し、研究を遂行した。過去の関連研 究として、C₆₀クラスターイオンのイオントラックに 関する研究として、C₆₀薄膜に C₆₀クラスターイオン を照射し、その照射痕を透過型電子顕微鏡で観察し た報告例がある¹¹。一方、我々の研究グループは、 高エネルギー粒子を有機薄膜に照射し、その飛跡に 沿った化学反応(架橋/重合反応)を誘起し、イオン ビーム照射後に未反応部位を有機溶媒で選択的に除 去することで、飛跡を反映したナノワイヤを支持基 板上に単離する手法を確立している^[23]。今回の実験 では、C₆₀クラスターイオンと有機材料の相互作用の 可視化およびそれを用いて得られるナノ構造体の観 察に関する検討を進めた。

1.2 照射実験と結果

高崎量子応用研究所の加速器を用い、6.0 MeV の C_{60}^{+} イオンを調整した。単一トラックの観察のた め、照射密度は 1.0×10^9 cm⁻²に抑え、 C_{60}^{+} イオンの 飛跡が重なることを防いだ。用いた有機化合物は 4,4',4"-Tri-9-carbazolyltriphenylamine (TCTA) であり、 東京化生工業株式会社より購入し、シリコン基板上 にスピンコート法により薄膜試料として準備した。 照射実験の主要な結果について Figure 1 に示す。

Figure 1は、**TCTA**の膜厚を 125、290、1200 nm と 変えて 6.0 MeV C_{60}^+ イオンを照射し、シクロヘキサ ンで現像した後の AFM 像である。膜厚 125 nm の試 料からは径の均一なナノワイヤが得られた(**Figure 1** a)。それに対し、膜厚が 290、1200 nm のサンプ ルからはおたまじゃくし型のナノワイヤが得られた

#seki@moleng.kyoto-u.ac.jp

Figure 1. (top) AFM topographic images of nanowires from thin films of **TCTA**. The film thickness is 125, 290 and 1200 nm for (a–c) respectively. The films were irradiated with 6.0 MeV C_{60}^{+} ions at the fluence of 1×10^9 ions cm⁻², and developed with cyclohexane. Scale bars represent 500 nm. (bottom) Schematic illustrations of possible ion tracks of 6.0 MeV C_{60}^{+} cluster ion in **TCTA** film on Si substrate. The thickness of **TCTA** is 125, 290, 1200 nm (left to right), respectively.

(Figure 1b, c)。さらに、得られたナノワイヤの平均長は、膜厚 125、290、1200 nm のものでそれぞれ74±7.5、201±17、194±23 nm となった。つまり薄い膜(125 nm)の場合は、照射された6.0 MeV C₆₀⁺イオンはシリコン基板まで到達しているが、厚い膜(290、1200 nm)の場合、基板まで到達せず TCTA 膜中で停止している、ということである。以上より

[H27-4]

6.0 MeV C₆₀⁺クラスターイオンの TCTA 中のイオン トラックは Figure 1 下のようにワイヤの頭部が基板 側を向いた配向状態をとると考えられる。この理由 として以下の仮説を考えた。C₆₀⁺クラスターを構成 する原子は入射直後に電離によって分離され固体中 を進むにつれて徐々に平衡電荷へと近づく。この状 態で個々の炭素イオンはクーロン反発力を受け、 個々のイオン間距離は大きくなっていく。しかし、 入射直後の材料深さ方向の運動エネルギーがそのク ーロン力よりもずっと大きいため、ビームはわずか に広がるのみであると考えられる。次第にエネルギ ーを失い失速したイオンは、ついにクーロン力によ り動径方向に広がりを持つ。このクーロン爆発によ りおたまじゃくし型ナノワイヤの頭部が形成されて いることが考えられる。

参考文献

- P. Kumar, D. K. Avasthi, J. Ghatak, P. V. Satyam, R. Prakash, A. Kumar, *Appl. Surface Sci.*, **2014**, *313*, 102– 106.
- [2] Y. Takeshita, T. Sakurai, A. Asano, K. Takano, M. Omichi, M. Sugimoto, S. Seki, Adv. Mater. Lett., 2015, 6, 99–103.
- [3] A. Horio, T. Sakurai, G.B.V.S. Lakshmi, D. K. Avasthi, M. Sugimoto, T. Yamaki, S. Seki, "Formation of Nanowires by Single Particle-Triggered Linear Polymerization of Solid-State Aromatic Molecules" *Nanoscale*, **2016**, *8*, 14925–14931 (2016).