加速器結合型電子顕微鏡による その場観察法の高度化と材料劣化機構の解明

Development of in-situ observation technology in transmission electron microscopes on line with ion accelerators, and its application to materials degradation mechanism

阿部弘亨 ^{A)}, 村上健太 ^{A)}, 叶野翔 ^{A)}, 大久保彰 ^{B)}, 藤井克彦 ^{C)},

Hiroaki Abe ^{A)#}, Kenta Murakami ^{A)}, Sho Kano ^{A)}, Akira Ohkubo ^{B)}, Katsuhiko Fujii ^{C)}

^{A)} The University of Tokyo, ^{B)} JAEA, ^{C)} INSS

Abstract

We have recently installed a TEM interfaced with an ion accelerator at HIT Facility in University of Tokyo. In this report, we briefly describe the facility set-up and its performance especially in microscopic simultaneous observations under ion irradiation in gold at elevated temperature, as well as its future applications to nuclear materials development. *Keyword*: Ion Accelerator, TEM, Radiation damage, Displacement cascades

1. 加速器結合型電子顕微鏡法の開発

加速器結合型電子顕微鏡はイオンビームを透過電 子顕微鏡試料室へ輸送し照射その場観察を行う装置 であり、はじき出しカスケード損傷に起因した二次 欠陥や照射誘起相変態の直接観察が可能な、世界的 に見ても稀有な装置である[1-15]。最近では核融合炉 材料など照射過酷環境での材料挙動の評価手法とし て改めて注目され、新規装置の設置も複数のプロジ ェクトが進んでいる[8-15]。近年大きく進展した原子 レベルモデリングとの比較の観点からの活用が望ま れている。

本プロジェクトでは、照射影響の機構論的解明に 資する実験的手法として、高エネルギーー次はじき 出し原子(PKA)の生成が可能な照射場を用い、照 射損傷に起因する材料特性変化の機構論の解明を目 的とする。そこで、MeV クラスのイオン加速器に透 過電子顕微鏡を結合したその場観察装置を構築し、 原子炉材料、核融合炉材料の照射下安定性を考察す ることとした。

本プロジェクトにおけるその場観察装置の開発で は、以下の点を目標とした。①イオン照射中に透過 電子顕微鏡観察が可能となるように、電子線とイオ ンビームの光軸のなす角は小さく設計する;②加速 器システムが供給できる最高エネルギーのイオンビ ームを入射可能な設計にする;③入射するイオンビ ームのフラックスは、一つのイオンと材料の相互作 用の影響が観察可能な低密度から1日で 0.1 dpa 以 上のはじき出し損傷を与える高密度まで可変する; ④カスケード損傷の二次生成物の観察を可能にする ためにビデオレート程度の CCD カメラを搭載する。 その場観察システムは、東京大学HITのBL7 を延長して隣接する電子線構造測定室へイオンビー ムを輸送し、東京大学が所有する透過電子顕微鏡 JEM 2000EX を分解して、イオンビームを入射可能 な試料室を新たに組み込んだ。イオンビームを入射 可能な試料室を新たに製作してポールピースと集束 レンズの間に十分な空間を作り、ポールピースの上 部から30°でイオンビームを入射する構造とした。 電子顕微鏡の設置室へイオンを導くには、ビーム

#abe.hiroaki@n.t.u-tokyo.ac.jp

を水平および垂直方向に変更させる必要がある。H ITのタンデトロンの高圧側の分析電磁石は、電子 顕微鏡設置室に近いBL7に対して 32 MeV amu の偏向性能を有している。そこで、BL7の終端か ら電子顕微鏡までビームラインを延長するに当たり、 新規に設置した偏向電磁石は同等の性能とした。可 能な限り高フラックスなイオンビームを輸送するた めに、偏向電磁石はエッジフォーカスが最大となる ように偏向経路を設計した。

観察用 CCD カメラとして MegaView 2 (オリンパス)を採用した。このカメラの視野は、JEM-2000EX のフィルム位置とほぼ対応しており、解像度は 1376×1032 である。フレームレート最大 25 fps であり、照射欠陥集合体の観察に適している。ただし高倍率での撮影には向いていない。

本プロジェクトで構築したその場観察システムの 構成を図1に示す。また加速器側の室および顕微鏡 側の室におけるビームラインの外観を図2に示す。 加速器から射出されたイオンは高圧端側の分析電磁 石によって左 30°に偏向してBL7へと入射する。 BL7の従来の終端はRBS用のチャンバであったが、 このチャンバのフランジを加工して、ビームライン の延長部分を取り付けた。始めに水平偏向電磁石に よって更に左へ 45 °偏向させて、加速器を設置し ている重イオン加速器兼照射室から電2子顕微鏡を 設置している電子線構造測定室へとイオンビームを 輸送する。水平偏向部のストレートポートには固定 式のファラデーカップを取り付ける。偏向部の出口 位置には挿入式のファラデーカップを取り付ける。 電子線構造測定室へと入射したイオンビームは垂直 偏向電磁石によって下向きへ 60°偏向され、その後 電子顕微鏡へ向かって直線的に輸送される。ビーム 位置の微調整のために、垂直偏向電磁石と電子顕微 鏡の間には、1組の静電レンズおよびXY方向に各 2 組の静電ディフレクタが設けられている。ビーム ラインの終端近傍には挿入式のファラデーカップを 設けており、ビームラインの終端および電子顕微鏡 の入射部にはそれぞれゲートバルブを設け、その間 を溶接ベローズで接続している。機械的な振動を抑 制するため、ビームラインは3台のスパッタイオン

[H27-07]

電子顕微鏡内に入射したイオンビームは、内部で 不要な照射をすることを避けるため、導入管の内部 を通って試料位置近傍まで導かれる。導入の直径は 段階的に小さくなり、最終的にφ2.5 のビームが試 料位置へ照射されることになる。導入管は基本的に 地絡されるが、一部は電気的に区分されており、電 流検出のために使用することができる。電子顕微鏡 への入射部分の外観を図3に示す。

加速器と電子顕微鏡の位置合わせを精緻に行い、 最終的にカプトンフィルムにイオンビームと電子ビ ームの焼き目を付け位置を決め、ファラデーカップ でビームプロファイルを確認した。そして電子顕微 鏡試料上で約 φ2 の領域にイオンビームの入射を確 認した。この条件でのビームプロファイルを測定し 図4に示す、ほぼ均一なイオンビームが得られてい ることを確認した。

2. その場観察実験

面心立方構造を有する金属のモデル合金として金 を用いて、その場観察実験を行った。2MeV の Fe イ オンを様々な温度で Au 薄膜へ照射したところ、直径 10 ナノメートル程度の欠陥集合体が形成されては消 滅する過程が観察された。図 5 に示す通り、欠陥集 合体の形成は徐々に大きくなるのではなく、CCD カ メラにおる測定の 1 フレーム (40 ms) の間に突然 発現し、その後しばらくはサイズに有意な変化が見 られないという特徴がある。欠陥集合体の形成効率 はイオン束の 15 % 程度であり、本実験の範囲では 温度依存性はなかった。1 フレームにひとつの欠陥 集合体が発現することもあるが、図 5 のように複数 の欠陥集合体が比較的近い位置に同時に現れること もある。これらの特徴から、その場観察される欠陥 集合体は、カスケード損傷によって高密度に形成さ れた空孔型欠陥が短距離の熱拡散によって集合し、 可視化されたものだと考えられる。

Au 中の空孔型欠陥集合体は不安定であり、比較的 短い時定数で消滅する。欠陥集合体の寿命は照射温 度が高いほど短くなった。欠陥サイズの減少は断続 的に発生する傾向がある。その特徴的な例を図3に 示す。図6(a)では赤い円の中に欠陥集合体は見られ ない。0.04 秒後の図6(b)では直径20 nm 程度の集 合体が形成されている。この欠陥集合体のサイズは 図6(c)までの1.36 秒間にわたって、ほとんど変化 していないが、次のフレームである図6(d)では欠陥 集合体の直径は半分以下まで減少している。このよ うに、照射下における欠陥集合体は数回の急激なサ イズの減少を経て消失することが多い。この挙動か ら、欠陥集合体の消滅には、カスケード損傷によっ て局所的に多量に導入された格子間原子群との対消 滅といった集合体同士の相互作用が大きく寄与して おり、単空孔の放出や格子間原子の吸収といった点 欠陥の拡散の影響は比較的小さいと考えられる。

3.まとめ

東京大学HITのタンデトロン加速器を使用し、 透過電子顕微鏡と結合したその場観察装置を開発し た。この装置は、照射その場での透過電子顕微鏡観 察が可能なその場観察装置としては、世界最高レベ ルのエネルギーでイオンを入射できる。この装置を 使用して、面心立方金属のモデル合金である Au に 対してイオン照射下でのその場観察実験を行い、照 射後実験では観察できない欠陥の形成および消滅の 動的な過程を観察することに成功した。また、実験 の成功に至る試行錯誤の過程を経て、新たなその場 観察装置の特性に習熟し、原子モデリングと対応可 能なさまざまな照射下その場観察実験を行うための 技術基盤を構築できた。

尚、本研究では JAEA に設置の加速器結合型電子 顕微鏡も用いることとしているが、本年度は装置の 立ち上げ整備作業を実施した。次年度後半より使用 が可能になる見込みである。

参考文献

[1] C. W. Allen et al, Nuclear Instruments and Methods in Physical Research B 40-41 (1989) 553-556.

[2] C.W. Allen, Ultramicroscopy 56 (1994) 200-210.

[3] R. M. Hengstler-Eger et al, Journal of Nuclear Materials 423 (2012) 170-182.

[4] Y. Idrees et al, Journal of Nuclear Materials 433 (2013) 95-107.

[5] Y. Idrees et al, Journal of Nuclear Materials 441 (2013) 138-151.

[6] L. F. He et al, Journal of Nuclear Materials 456 (2015) 125-132.

[7] Y. Serruys et al, Nuclear Instruments and Methods in Physics research Section B 240 (2005) 124-127.

[8] Y. Serruys et al, C. R. Physique 9(2008) 437-444.

[9] L.P. Guo et al, Nuclear Instruments and Methods in Physics Research A 586 (2008) 143–147.

[10] M-L. Lescoat et al, Journal of Nuclear Materials 428 (2012)176-182.

[11] C. Sabathier et al, Nuclear Instruments and Methods in Physics Research B 326 (2014) 247-250.

[12] K. Hattar et al, Nuclear Instruments and Methods in Physics Research B 338 (2014) 56-65.

[13] C. Chisholm et al, Materials Transactions 55 (2014) 418-422.

[14] D. Bufford et al, Chemical Communications 50 (2014) 7593-7596.

[15] J. A. Hinks et al, Nuclear Instruments and Methods in Physics Research Section B, 267, 3652-3662, 2009.

[H27-07]

[16] K. Murakami, et. al., Nuclear Instruments and Methods B, 381 (2016) 67-71.
[17] K. Murakami, et. al., Proc. ICAPP 2017, No. 17288

図1 その場観察ビームラインの概要

図 2 その場観察ビームラインの外観左:重イオン加速器兼照射室側 右:電子線構造測定室側

図3 ビームラインと電子顕微鏡の接合部の外観

図4 試料位置におけるビームプロファイル

ファラデーカップ(\$ 0.21)付き試料ホルダを用いて、Y 軸方向に 22°回転させて測定した。

[H27-07]

図5 照射下でのAuの欠陥集合体形成挙動

図6 照射下でのAuの欠陥集合体消滅挙動