マメ科植物における複数金属元素蓄積機構の解明 Identification of Multi-element Accumulation Mechanisms in Legume

古川純#,A,B), 鈴井伸郎 C), 尹永根 C), 江夏昌志 C),

山田尚人^{C)},山縣諒平^{C)},河地有木^{C)},佐藤隆博^{C)}

Jun Furukawa ^{#,A,B)}, Nobuo Suzui ^{C)}, Yong-Gen Yin ^{C)}, Masashi Koka ^{C)}, Naoto Yamada ^{C)}, Ryohei Yamagata ^{C)}, Naoki Kawachi ^{C)}, Takahiro Satoh ^{C)}

^{A)} Life and Environmental Sciences, University of Tsukuba ^{B)} Center for Research in Isotopes and Environmental Dynamics, University of Tsukuba

^{C)} Takasaki Advanced Radiation Research Institute,

National Institutes for Quantum and Radiological Science and Technology

Abstract

In the comparison of two cultivars of Lotus japonicus, MG-20 and B-129, it was suggested that B-129 had a low activity of iron translocation from root to shoot. To clarify the difference of iron transport mechanism, atmospheric Micro-PIXE analysis was carried out using their root tissues. The iron accumulation was observed around the vascular bundle tissue in B-129 root. The vascular specific localization patterns suggested the iron transport was suppressed at the xylem loading process of iron. To confirm the effect of this deficit of Fe homeostasis on the multi-element accumulation observed in B-129, metal localizations were investigated using high and low Fe supply plants. The plants treated with high or low Fe concentrations for 3 weeks were subjected to Micro-PIXE measurements. In this experiment, less accumulation of Mn around vascular bundle tissue was observed in B-129 root. In our previous experiments using PETIS, high Fe concentration treatment for 3 weeks showed active Zn translocation from root to shoot in B-129. These results suggest Fe condition in the plant body regulates not only Fe behavior but Zn and Mn localization in Lotus japonicus, especially in B-129. For identifying responsible mechanisms in Zn and Mn behaviors, gene expression analysis involved in those elements translocation are necessary.

Keyword: Lotus japonicus, Micro-PIXE, PETIS, iron homeostasis, zinc behavior, manganese behavior

1. はじめに

植物の生育に必要な必須元素には、窒素、リン、 カリウムのように多量に必要とされる養分に加えて、 ホウ素、マンガン、鉄、亜鉛、銅などといった微量要 求性の栄養素が必要である。これら微量元素の生理 的な役割を明らかにするためには、植物の根や葉と いった組織ごとの蓄積量のみならず、その組織内に おける詳細な局在部位を知ることが重要である。特 に栄養環境に応答した元素局在の変化は、元素の欠 乏や過剰といった現象が植物体のどのような組織・ 部位で問題となっているのかを解明する上で非常に 重要な知見となる。放射線を利用した元素イメージ ング手法である大気 Micro-PIXE(Particle Induced Xray Emission)法は、複数元素の同時定量が可能であ り、かつミクロンレベルでの高解像度な元素分布像 が得られることから、これらの情報を取得するため に極めて有効な手法である[1,2,3]。

また、栄養元素の欠乏や過剰といった現象が引き 起こす植物の代表的な応答反応として、根圏におけ る元素吸収過程、あるいは根から各組織への輸送機 構の活性化や抑制といった元素動態の変化が挙げら れる。そこで、本研究課題では植物体における元素 動態の解析手法としてこれまでに数多くの実績を有 する PETIS (Positron Emitting Tracer Imaging System) 法^[3, 4]による実験も組み合わせて行うことを目的と している。本年度はマメ科のモデル植物であるミヤ

#furukawa.jun.fn@u.tsukuba.ac.jp

コグサが有している複数の金属元素に対する蓄積能 の系統間差に着目し、Micro-PIXE 法による鉄、マン ガンの局在解析を行ったのでそれらの成果について 報告する。

2. 実験手法

実験にはマメ科のモデル植物であるミヤコグサ (Lotus japonicus)を用いた。複数金属の蓄積能に差 が認められる Gifu B-129 系統(以下 B-129)と Miyakojima MG-20 系統(同 MG-20)の2 系統を播種 し、発芽後4週間1/10 Hoagland's 培地を基本組成と する水耕栽培を行った。水耕液は2、3日ごとに交換 し、水耕液中の栄養塩の濃度変化が植物に与える影 響を最小限にとどめた。我々はこれまでの研究から、 ミヤコグサを同条件で栽培した場合、B-129 の地上 部・根においてナトリウム、マンガン、ニッケル、 銅、亜鉛の濃度が MG-20 よりも高く、また鉄におい ては B-129 の根で濃度が高いにも関わらず、地上部 では MG-20 の方が高濃度であることを明らかにし ている。Micro-PIXE 用のサンプルとして、各個体の 根から中間部をサンプリングし、新鮮な状態で凍結 切片作成用のコンパウンドに浸潤・包埋した。サン プルが崩壊しないよう緩やかに凍結した後、クライ オミクロトームにより 20-100 µm 厚の輪切り切片と 縦切り切片を作製した。それぞれの切片をポリカー ボネートフィルム上に設置し、3 MeV の H+ビームを

照射して、対象元素から放出される特性 X 線を測定 した。

3. 結果と考察

ミヤコグサの地上部と根の元素濃度を ICP-AES を 用いて測定した先行研究により、B-129 は MG-20 よ りも根における鉄濃度が高く、地上部においては逆 に MG-20 の鉄濃度が高くなっていることから、これ らの系統では水耕液から吸収した鉄を、根から地上 部へ輸送するための鉄輸送活性に系統間差があるこ とが示唆されている。それぞれの系統の根において どのような部位に鉄が蓄積しているかを明らかにす るために大気 Micro-PIXE 法による鉄の局在解析を 行ったところ、特に B-129 の根において維管束周辺 に鉄が蓄積していることが示された。このため、B-129 では根の維管束周辺の細胞から導管内へと鉄を 輸送する活性に MG-20 との系統間差があることで、 地上部への鉄輸送が抑制されていることが示唆され た。

双子葉植物のモデル植物であるシロイヌナズナで は、地上部への鉄輸送活性が抑制された変異体にお いて、鉄以外の複数の金属元素の吸収量が増加する ことが報告されている^[5,6]。地上部の鉄欠乏が根にお いて鉄の吸収機構を活性化させ、その副次的な効果 として鉄以外の元素についても吸収量が増加したも のと考えられている。我々はミヤコグサにおける複 数元素の高蓄積も同様の機構によるものであると予 想し、鉄栄養条件を変化させたミヤコグサを用いて 根における複数元素の局在解析を行った。

Figure 1. Iron and manganese localization images obtained by Micro-PIXE. Plant samples are cultivated under high Fe condition for 3 weeks. Potassium localization was used for tissue recognition.

対照区となる培養条件である 2.0 µM に比べ、鉄欠 乏ならびに鉄過剰の条件をそれぞれ 0.2 µM、20 µM とし、3 週間継続して栽培したところ、B-129 の鉄過 剰サンプルにおいて亜鉛の地上部への輸送促進が生 じることが示された。また Micro-PIXE の解析から、 同条件の植物において維管束組織におけるマンガン 含量の低下が認められた(Figure 1)。マンガンは B-129 において蓄積量が増加している元素のひとつで あり、先のシロイヌナズナ鉄輸送機構欠損変異体で も蓄積が高くなる代表的な元素である。しかしなが ら、鉄過剰条件下での栽培においてどのような挙動 を示すかについてはこれまでに知見がなく、この維 管束組織におけるマンガン蓄積量の低下が、維管束 組織へのマンガン輸送の抑制によるものであるか、 あるいは明らかでない。Fe 過剰区で認められたこれ らの元素動態の変化が共通した機構による制御の結 果であるかについてしてれまでに PETIS 法による解 析例もあることから、同法による輸送活性の検証も 今後視野に入れて解析を進める予定である。

4. まとめ

本実験は鉄条件のみが変更された実験設定であり、 栽培環境としては変更されていない亜鉛やマンガン の局在が変化したことから、シロイヌナズナ同様に ミヤコグサの複数元素集積機構にも鉄の恒常性が関 与している可能性が示された。また MG-20 ではこれ らの元素の局在・挙動に大きな変化が認められなか ったことから、この機構は MG-20 よりも B-129 にお いて活発に制御されているものと考えられ、水耕液 の鉄条件の変化がどのように植物体中の元素含量を 変化させたのか、またその変動は系統間で異なって いたのかについて、栄養条件に対する応答として極 めて興味深い現象である。

参考文献

- T.Yamamoto, et al., "Development of Method for Plant Material Analysis by Micro-PIXE (Particle Induced X-ray Emission)", JAEA Takasaki Annual Report 2012, 94, 2014
- [2] T.Yamamoto, et al., "Development of Method for Plant Material Analysis by Micro-PIXE (Particle Induced X-ray Emission)", JAEA Takasaki Annual Report 2013, 97, 2015
- [3] https://doi.org/10.3769/radioisotopes.68.643
- [4] https://www.mdpi.com/2412-382X/3/3/18
- [5] http://www.plantphysiol.org/content/111/3/849
- [6] http://www.plantphysiol.org/content/144/1/197

Vigna 属耐塩性野生種のナトリウム吸収に関するイメージング解析 Visualizing Sodium Localization in Salt-tolerant Species of the Genus *Vigna*

内藤健#,A),野田祐作 A),古川純 B),鈴木伸郎 C),尹永根 C),河地有木 C),

Ken Naito ^{#,A)}, Yusaku Noda ^{A)}, Jun Furukawa ^{B)}, Nobuo Suzui ^{C)}, Yong-Gen Yin ^{C)}, Naoki Kawachi ^{C)}

^{A)} Genetic Resources Center, National Agriculture and Food Research Organization

^{B)} Department of Life and Environmental Sciences, University of Tsukuba

^{C)} Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and

Technology

Abstract

Vigna marina is the most salt-tolerant species in the genus *Vigna*. Our previous study indicated that *V. marina* suppresses Na^+ accumulation by excreting Na^+ out of the roots. In addition, the results suggested the Na^+ excretion from the root occurs at daytime and stops at night. However, control study is necessary to confirm that those features are characteristic to *V. marina*. Thus we studied *V. luteola*, a close relative of *V. marina*. There are two types of *V. luteola*: One lives in beach and is salt-tolerant (beach-type), and the other lives in river bank is salt-sensitive (river-type). We performed PETIS analysis on both accessions and revealed that the beach-type excreted less amount of Na^+ from the root, and does not show a clear diurnal rhythm compared to *V. marina*. The river-type did not excrete Na^+ at all. As such, the diurnal rythm in Na^+ excretion from the root is a key characteristic of *V. marina*, which could be an important player in salt tolerance of this species.

Keyword: Vigna marina, Vigna luteola, salt tolerance

1. はじめに

ハマササゲ(Vigna marina)はアズキのなかまで、熱帯~亜熱帯の海岸において最も海寄りの植生を占める。その耐塩性は非常に高く、400 mM NaCl(海水は600 mM)に耐えることができる[1]。またこれまでの研究から、ハマササゲは水ともに吸収した Na⁺を根から再び排出することで植物体内に蓄積されるNa⁺の量を他の耐塩性植物より低く抑えられる(Figure 1)ことが明らかとなった。しかも、根からのNa⁺排出は明期に限られており、暗期には停止す

ることも明らかとなった(Figure 2)。

Figure 1. ²²Na localization in *V. marina* and *V. luteola* revealed bey BAS.

しかし、上記の現象が本当にハマササゲに特徴的 なことなのか、については疑問の余地がある。そこ で、本研究ではハマササゲの近縁種であるナガバハ マササゲ(*V. luteola*)について、根からのNa⁺排出の 有無や様式を明らかにした。ナガバハマササゲには 海岸型と河岸型の2種類があり、海岸型はハマササ

#knaito@affrc.go.jp

ゲに次いで耐塩性が高いのに対し、河岸型の耐塩性 は極めて低い。また、海岸型は根に多くの Na+を蓄 積するのに対し、河岸型は吸収した Na⁺のほとんど が葉に移行するという際立った違いがある(Figure 1)。したがって、これらの系統に PETIS による²²Na のリアルタイム動態解析を実施することで、ハマサ サゲの根における Na⁺排出様式がこの種に特徴的な ものであるかどうかを検証できると考えられた。

2. 材料と方法

海岸型ナガバハマササゲ (JP233389)、および河岸型 ナガバハマササゲ (JP235855) はいずれも農研機構遺 伝資源センターから提供を受け、両系統とも PETIS による²²Naのリアルタイムイメージング解析に供試 した。植物体の栽培条件は水耕で、発芽 2 週間後に ²²Na を含む 100 mM NaCl を 24 時間の前処理を行っ た。その後、根を洗浄した上で²²Na を含まない 100 mM NaCl 条件に移し、72 時間にわたって撮像を行 った。撮像後は、ImageJ によって水耕液中の放射線 量の経時変化を評価した。

3. 結果と考察

3.1 海岸型ナガバハマササゲ

PETIS による解析の結果、海岸型のナガバハマササ ゲでも水耕液中の放射線量が時間とともに増加し た。したがって、ナガバハマササゲもまたハマササ ゲと同様に根から Na⁺を排出することが示唆され た。しかし、前処理時に取り込まれた²²Na の総量 に対する排出率を比較してみると、ハマササゲより も排出能力が低いことが示唆された。

Figure 2. ²²Na in hydroponic culture during PETIS.

また、昼夜にける Na⁺排出の違いについては、ナガ バハマササゲでも水耕液中の放射線量増加速度は 明期において暗期よりも有意に高かった。しかしな がら昼夜の差はハマササゲで見られたほど明瞭で はなく、やや緩慢であった(Figure 2)。

3.2 河岸型ナガバハマササゲ

PETIS による解析の結果、河岸型ナガバハマササゲ では水耕液中の放射線量はほとんど増加しなかった。 したがって、この系統は根からの Na⁺排出をほとん ど行っていないことが示唆された。

3.3 結論

以上、ハマササゲに加えて2系統のナガバハマササ ゲについて²²Naを用いた PETIS 解析を実施した結 果、根における Na⁺排出能力の高さや、明期にのみ Na⁺排出が起きることがハマササゲの大きな特徴で あることが明らかとなった。この結果を受けて我々 は3系統の部位別・時系列トランスクリプトーム解 析を実施しており、その結果、ハマササゲの複雑な Na⁺排出様式が2遺伝子で説明できることを明らか にしている。

参考文献

[1] Yoshida et al. Plant Production Science 23: 114-128 (2020)

[H30-3]

ダイズ根系内におけるセシウム輸送と共存元素の影響 Elucidation of Cesium Transport Behavior in Soybean Root System

井倉将人^{#,A)}, 鈴井伸郎^{B)}, 尹永根^{B)}, 三好悠太^{B)}, 榎本一之^{B)}, 江夏昌志^{B)}, 山田尚人^{B)}, 山縣諒平^{B)}, 佐藤隆^{B)}, 河地有木^{B)}

Masato Igura ^{#,A)}, Nobuo Suzui ^{B)}, Yong-Gen Yin ^{B)}, Yuta Miyoshi ^{B)} Kazuyuki Enomoto ^{B)}, Masashi Koka ^{B)},

Naoto Yamada ^{B)}, Ryohei Yamagata ^{B)}, Takahiro Satoh ^{B)} and Naoki Kawachi ^{B)}

^{A)} Institute for Agro-Environmental Science, National Agriculture and Food Research Organization

^{B)} Takasaki Advanced Radiation Research Institute,

National Institutes for Quantum and Radiological Science and Technology

Abstract

The localization of radioactive cesium in soybean roots and nodules was investigated by positron-emitting tracer imaging system (PETIS) analysis to clarify the cesium uptake behavior in soybean root system. Radioactive cesium was significantly localized in soybean nodules, but cesium uptake in the root system was significantly suppressed under high potassium (K +) conditions. The micro particle induced X-ray emission (microPIXE) analysis showed a difference in stable cesium and potassium distribution in soybean nodule, and remarkable cesium distribution was confirmed inside of nodules. This behavior was considered to involve cesium transport from the roots. Under high-concentration potassium (K +) conditions, the distribution of cesium in nodule tissue could not be confirmed, and it was considered that the cesium uptake from nodule surface and the cesium transport from roots were suppressed at the same time.

Keyword: soybean, root nodule, cesium

1. はじめに

ダイズはセシウム吸収量の高い作物として知られ ており、元素吸収において根粒等の共生菌の関与が 示唆されている。ダイズ根系におけるセシウムおよ び共存元素吸収機構を解明することは、ダイズのセ シウム移行低減技術の開発に不可欠である。本研究 では、ダイズの根系における根および根粒内部のセ シウム局在および吸収挙動を明らかにし、根系内の 蓄積部位と地上部への輸送経路の解明から効率的な ダイズのセシウム移行低減手法の開発を目指す。

これまでの解析により、根粒組織はセシウムを蓄 積しやすい組織であるとともに、根と根粒間でのセ シウム移動が確認され、根粒組織も地上部へのセシ ウム供給に関与していることが示唆された^[1]。

作物の放射性セシウム移行低減において、カリウム施肥等の対策が実施されており、ダイズ根系組織内のセシウム動態におけるカリウム共存の影響について解析を行った。

2. 材料と方法

播種時に根粒菌(Bradyrhizobium japonicum)を接種 したダイズ(エンレイ)を水耕栽培により約1ヶ月栽 培し、ポジトロン放出核種イメージング分析(PETIS 分析)によるリアルタイムイメージング解析に用い た。作物のセシウム吸収量は共存するカリウム濃度 の影響を強く受けるため、実験開始前72時間の水耕 溶液中カリウム濃度を通常濃度(K+条件)および無添 加(K-条件)とし、各カリウム濃度条件への順化を行 った。PETIS 分析によるセシウム動態解析において、 # migura@affrc.go.jp 上記の植物体の根系からポジトロン放出核種のセシ ウム 127(¹²⁷Cs)を 12 時間吸収させ(パルス試験)、その 後無標識水耕液による栽培試験(チェイス試験)によ り根系のセシウム吸収および地上部へのセシウム輸 送挙動について解析を実施した。

上記と同じ K+および K-条件のダイズ株に 1mM の安定同位体セシウム (¹³Cs)を吸収させ、セシウ ム吸収における根および根粒内部の安定同位体セシ ウムおよびカリウム分布について粒子励起 X 線放射 分析(microPIXE 分析)を行った。¹³³Cs を添加した水 溶液で 72 時間栽培し、その後、採取したダイズ根お よび根粒部位の凍結ブロックを作成した。クライオ スタット(CM3050, Leica co.)を用いて根および根粒 の凍結切片(厚さ 50µm)を作成し、凍結切片の microPIXE 分析により、ダイズ根および根粒組織内 の非破壊的な元素分布解析を実施した。

結果と考察

PETIS 分析による¹²⁷Cs リアルタイムイメージングの経時変化を Fig.1 に示す。K+および K-条件では ダイズ根系に取り込まれた¹²⁷Cs シグナル量に違い が見られ、K+条件の根および根粒部位の¹²⁷Cs シグ ナル値は、K-条件に対して 5~10 倍程度低い傾向 が確認された。カリウムの共存により、根および根 粒表皮からの¹²⁷Cs 吸収量が大きく低下し、これに伴 い、K-条件でみられたチェイス試験時の根-根粒間 の¹²⁷Cs 輸送が不明瞭になり、地上部への¹²⁷Cs 移行 量も低下していた。

a) Normal potassium condition (K+ condition)

b) Potassium-free condition (K- condition)

Figure 1. Real-time imaging by PETIS on ¹²⁷Cs uptake in soybean roots and nodules (Chase experiment).

microPIXE 分析によるダイズ根および根粒組織内 の元素分布解析において、K-条件では根粒内部に 顕著なセシウム蓄積が確認され、特に内皮部分で顕 著なセシウム分布が確認された(Fig.2)。これは根か らの内部輸送による蓄積が影響しているためと考え られた。一方、K+条件では根粒の表皮、内皮ともに セシウムの明確な分布が確認されず、根粒表皮から の吸収抑制に加えて、根からの内部輸送量の減少に 伴う挙動であると考えられた。

a) Normal potassium concentration (K+ condition)

b) Potassium-free condition (K- condition)

Figure.2 Distribution of stable potassium and cesium in soybean nodules under different potassium concentration.

今回の PETIS 分析によりダイズ根および根粒表皮 からのセシウム吸収量はカリウム共存により顕著に 抑制されている事が確認された。また、microPIXE 分 析で確認された根粒内皮へのセシウム分布は、根か らの内部輸送に由来する蓄積であると考えられた。 カリウムの共存により、根粒表皮からの吸収および 根からの内部輸送がともに低下したため、根粒内部 への明確なセシウム分布が見られなくなったと考え

られた。

今後は根と根粒間の詳細なセシウム輸送量を評価 するとともに、カリウム共存等による抑制効果につ いて解析を進める。

参考文献

[1] M.Igura, N. Suzui, Y.-G. Yin, Y. Miyoshi, K. Enomoto, T. Satoh and N. Kawachi "Elucidation of Cesium Transport Behavior in Soybean Root System", QST Takasaki Annual Report 2019 QST-M-29, 109, 2020

Micro-PIXE/PIGE 法を用いた茶葉の Al, F 分布測定 Measurements of Elemental Distribution of Al and F in Tea Leaves Using Micro-PIXE/PIGE Method

安田啓介^{#,A)}, 安田香澄^{A)}, 江夏昌志^{B)}, 山田尚人^{B)}, 山縣諒平^{B)}, 佐藤隆博^{B)}, 河地有木^{B)} Keisuke Yasuda ^{#,A)}, Kasumi Yasuda^{A)}, Masashi Koka^{B)}, Naoto Yamada^{B)}, Ryohei Yamagata^{B)}, Takahiro Sato^{B)}, Naoki, Kawachi^{B)} ^{A)} Department of Informatics and Environmental Science, Kyoto Prefectural University

^{B)} National Institutes for Quantum and Radiological Science and Technology

Abstract

The elemental distributions in tea leaves were determined using micro-PIXE/PIGE method. It was found that it is important to reduce the thickness of the sample to less than single cell for accurate measurement of elemental distribution. Measurements of samples with a thickness of 20 μ m show similar distributions of Al, Si, and F in the epidermal region.

Keyword: tea leaves, Al, F, micro-PIXE/PIGE

1. はじめに

アルミニウム(Al)は土壌中ではケイ素(Si)、酸 素(O) に次いで3番目に多い元素である。通常、土 壌中では Al はオキシ水酸化物、アルミノケイ酸塩等 の形態で存在し、植物での化学的および生物学的反 応には寄与しないと考えられている。しかし、酸性 土壌では三価カチオン (Al³⁺) として土壌中に溶け出 す。Al³⁺イオンは植物に対して毒性を有し、多くの植 物ではその体内に取り込まれることによって成長阻 害等を引き起こす。特に熱帯雨林では酸性土壌が多 いため影響は大きく、Al³⁺イオンの植物毒性がこの 地域の農作物の収量を制限しているとも考えられて いる。一方、植物の中には酸性土壌でも Al³⁺イオン の影響を受けないものもある。チャ(Camellia sinensis) はその代表的なものであり、成長阻害を受けずに植 物体内に数1000~数10000 mg/kgという高濃度のAl を蓄積する。植物毒である Al³⁺イオンを吸収して高 濃度で集積することから、チャは Al³⁺イオンの解毒 機構を有すると考えられる。これまでの研究から、 AIは茶葉の表皮細胞の細胞壁に分布することが明ら かになってきた[1]。このことからチャは茶葉におい て Al を細胞壁に閉じ込めることによってその影響 を排除しているものと考えられる。また、他の元素 と毒性の低い化合物を形成して解毒しているとも考 えられている^[2]。茶葉中での Al の化学形については アルミノケイ酸塩、フッ素化合物、アルミニウムー クエン酸錯体などが提案されている^[3,4]。

我々はこれまでにチャにおける Al 解毒機構の解明を目指して、イオンマイクロビームを用いた PIXE

(Particle Induced X-Ray Emission)法による茶葉中の 微量元素濃度、および元素分布の測定を行ってきた ^[5]。これにより茶葉中では Al は表皮細胞の細胞壁に 存在することを確認した。また成熟した茶葉では Al と同様に Si も表皮細胞の細胞壁に存在することを見 出し、チャは茶葉でアルミノケイ酸塩を形成するこ とで Al を解毒している可能性を示した^[6]。一方、チ ャはフッ素 (F)の高集積植物でもあるため、フッ素

ニズムが推察されている。そこで我々は2019年度よ り TIARA のイオンマイクロビームを用いた茶葉中 のAlおよびFの分布測定を開始した。この測定では Al は PIXE 法で、F は核反応からのガンマ線を測定 する PIGE (Particle Induced γ-Ray Emission) 法で同時 に測定する。2019年度の測定^[7]ではAlとFが茶葉の 表表皮に局在することを見出した。しかし、細胞レ ベルでは分布は一致せず、Al と Si の間で見られた分 布の強い相関は見られなかった。分布が一致しない 理由としては、Fの表皮細胞内での分布が Al、Si と は異なることが第一に考えられるが、それ以外に試 料の厚さが影響している可能性が考えられた。この 測定で用いた試料の厚さは 120 μm で、細胞 5~6 個 程度の厚さである。PIXE で測定した Al と Si の Kα 線のエネルギーはそれぞれ 1.49 keV、1.74 keV で、X 線の減衰を考慮すると、測定深さは細胞1個分程度 (~20 µm) である。一方、PIGE で測定した F のガ ンマ線のエネルギーは 6~7 MeV と高いため減衰の 影響はなく、より深い領域に存在する F も測定され る。そのため、Fについては複数の細胞の分布を重ね 合わせてみている可能性がある。そこで、2020年度 は試料作製方法を変更してより薄い試料を作製し、 測定を行った。

化合物を形成することによって Al を解毒するメカ

2. 実験

2.1 試料

試料には京都府立茶業研究所で採取した生育期間 1年以上のサミドリ、ヤブキタの2種類の茶葉を使 用した。クライオミクロトーム(LEICA CM1860)を 用いて、茶葉の断面を葉脈の垂直方向に厚さ20μm および60μmで切り出し、これを凍結乾燥装置 (JEOL JFD-320)で約15分間真空乾燥することによっ て試料を作製した。

2.2 micro-PIXE/PIGE 測定

micro-PIXE/PIGE 測定は量子科学技術研究開発機

#yasuda@kpu.ac.jp

Figure 1 Schematics of the cross section of tea leave. Measurement regions of 400 μ m×400 μ m and 50 μ m×100 μ m are shown by red and blue boxes, respectively.

構高崎量子応用研究所イオン照射研究施設 (TIARA) のマイクロビーム装置を用いて行われた。エネルギ ーが 3 MeV の陽子マイクロビームを茶葉断面に照射 し、発生する特性 X 線を Si(Li)検出器(PGT LS30135) で、 $^{19}F(p,\alpha\gamma)^{16}O$ 反応で発生するエネルギーが 6~7 MeV のガンマ線を NaI(TI)検出器 (BICRON 4X4H4/3.5A) でそれぞれ検出した。測定時のビーム 径はおよそ 1 μ m×1 μ m、ビーム電流は 50~100 pA だ った。測定領域は 400 μ m×400 μ m、および 50 μ m×100 μ m とした。前者では表表皮、裏表皮を含む領域を測 定し、後者では表表皮付近のみを測定した。茶葉断 面と測定領域を模式的に表したものを Figure 1 に示 す。

3. 結果と考察

測定で得られた X 線のエネルギースペクトルを Figure 2 に示す。赤線が試料厚さ 20 µm のサミドリ、 青線が試料厚さ 60 μm のサミドリのスペクトルを表 す。また、2019 年度に測定した試料厚さ 120 µm の ヤブキタのスペクトルを緑線で示す。実線および点 線の矢印はそれぞれの元素の Κα および Κβ線のエ ネルギーを示す。いずれの試料からもアルミニウム、 ケイ素、リン、硫黄、塩素、カリウム、カルシウム、 マンガンが検出された。また、γ線のエネルギースペ クトルを Figure 3 に示す。¹⁹F(p,αγ)¹⁶O 反応で発生す るγ線のエネルギーは 6.13 MeV、6.92 MeV、7.12 MeV で、いずれの試料のでもこれらのガンマ線が測定さ れていることがわかる。また、ピークの低エネルギ ー側にこれらのγ線のコンプトンテールも見られる。 ここでは、4.6 MeV~7.4 MeV の範囲のイベントを ¹⁹F(p,αγ)¹⁶O反応で発生したγ線とみなして、フッ素の 分布を求めるのに使用した。

Figure 4 に厚さが 20 µm のサミドリ試料の測定で 得られた Al, Si, F, Ca の表表皮付近の二次元元素分 布を示す。測定領域は 100 µm×50 µm である。表表 皮領域において上記 4 元素はよく似た分布を示すこ とがわかる。試料の厚さの効果を検証するために、 厚さが 120 µm のヤブキタ試料の測定で得られた同 じ測定領域の二次元分布を Figure 5 に示す。Al と Si、 および F と Ca の分布はよく似ているが、表表皮領

Figure 2. X-ray energy spectra obtained with Si(Li) detector. Results of Samidori sample of 20 μ m thickness, Samidori sample of 60 μ m thickness and Yabukita sample of 120 μ m thickness are shown with red, blue and green lines, respectively. Solid and dotted arrows show K_a and K_β X-ray energy.

Figure 3. γ -ray energy spectra obtained with NaI(Tl) detector. Results of Samidori sample of 20 μ m thickness, Samidori sample of 60 μ m thickness and Yabukita sample of 120 μ m thickness are shown with red, blue and green lines, respectively.

域での Al, Si と F, Ca の分布が異なることがわかる。 2つの試料の元素分布のより詳細な解析を行うため、 それぞれの各元素の分布を水平方向に射影した図を 作成し、比較を行う。結果を Figure 6, Figure 7 に示 す。厚さが 20 μm のサミドリ試料の射影図 (Figure 6) では、Al、Si、F はピークの位置や射影の形が似 ていたが、Ca は測定領域が 35 μm 辺りのピークの位 置が Al、Si、F の位置から少しずれており、測定領 域が 20 µm 辺りのピークのカウント数よりも 35 µm 辺りのピークのカウント数の方が多いなど異なる特 徴が見られた。一方、厚さが 120 μm のヤブキタ試料 の射影図 (Figure 7) では、測定領域が 35 µm から 40 umの間のピークの位置は Al と Si、および F と Ca でそれぞれ一致していたが、Al と F では一致してい なかった。FとCaの分布にはどちらも測定領域が25 μmの辺りにショルダーが見られるが、これは Al と

Figure 4. Two-dimensional elemental distribution of Al, Si, F and Ca near epidermal region obtained with the Samidori sample of 20 μ m thickness.

Figure 5. Two-dimensional elemental distribution of Al, Si, F and Ca near epidermal region obtained with the Yabukita sample of 120 μ m thickness.

Si では見られない。

Figure 6. Line distributions of Al (red), Si (blue) F (green), and Ca (yellow) near epidermal region obtained with Samidori sample of 20 μ m thickness.

Figure 7. Line distributions of Al (red), Si (blue) F (green), and Ca (yellow) near epidermal region obtained with Yabukita sample of 120 µm thickness.

以上の結果と表表皮細胞の厚さが 20 µm 程度であ ることから、試料の厚さが120 µm と厚い場合は、表 表皮細胞の第 2 層目以降から放出された Χ 線やγ線 が検出されたことにより分布が重なって表示され、 これによって元素分布の見かけの相関が異なる原因 となる可能性があると考えられる。そこで Al, Si, Ca の K_α X 線について本セットアップでの検出効率を 試料厚さの関数として求め、X 線の脱出深さを見積 もった。結果を Figure 8 に示す。表表皮細胞の厚さ が約 20 µm であることを考慮すると、AI と Si は第 2 層目からのX線はほぼ検出されず、Caについては試 料の厚さが 120 µm であっても最奥の層から放出さ れた X線の約2割が検出されることがわかった。F に関しては計算を行っていないが、y線のエネルギー が 6~7 MeV と高いため、試料による九州の影響はな いと考えてよい。以上から、試料の厚さが 120 µm の ときは Al と Si の分布は第1層目の分布を示してお

り、CaおよびFはすべての層が重なった分布を示し ていると考えられる。このことから、試料の厚さが 120 μmのときはCaとFは第2層目以降の分布が重 なって表示されたため、これらのみが同様の分布を 示したのであると考えられる。試料の厚さが20 μm のときは細胞の第2層目以降からのX線やγ線の検 出が無く、1つの細胞内の分布を正確に測定するこ とができたと考えられる。以上から表皮細胞の形を 正確に知るためには試料の厚さを細胞1つ分以下に 設定する方が良いことが結論される。ただし、試料 の厚さが薄ければ薄いほど検出されるγ線の量が減 るため、表表皮細胞の領域におけるフッ素の分布を 調べる場合は細胞の厚さに近い20 μmで測定するこ とが最も良いと考えられる。

Figure 8. Transmissions for Al, Si, Ca K_{α} X-rays as a function of sample thickness.

4. まとめ

micro-PIXE/PIGE 法を用いて茶葉の元素分布測定 を行った。試料の厚さを変えた測定、および X 線の 吸収の計算から、正確な元素分布を得るには試料の 厚さを細胞 1 個程度にすることが重要であることが 示された。厚さが 20 mm の茶葉断面試料の元素分布 から、Al, Si, F が同様の分布を示すことが分かった。 今後、表表皮領域の各元素の X 線、y線カウント数の 比を調べることによって化合物形成の可能性を調べ る予定である。

参考文献

- Matsumoto, H.; Hirasawa, E.; Morimura, S.; Takahashi, E. Localization of aluminum forms in tea leaves. Plant Cell Physiol 1976, 17, 627-631.
- [2] Nagata, T.; Hayatsu, M.; Kosuge, N., Identification of Aluminium Forms in Tea Levels by ²⁷Al NMR, Phytochemistry 1992, 31(4), 1215-1218.
- [3] Gao, H.; Zhao, Q.; Zhang, X.; Wan, X.; Mao, J. Localization

of Fluoride and Aluminum in Subcellular Fractions of Tea Leaves and Roots. J Agric Food Chem 2014, 62, 2313-2319.

- [4] Morita, A.; Horie, H.; Fujii, Y.; Takatsu,S.; Watanabe, N.; Yagi, A.; Yokota, H., Chemical forms of aluminium in xylem sap of tea plants (*Camellia sinensis* L.), Phytochemistry 2004, 65, 2775-2780.
- [5] Uomori, S.; Yamashita, H.; Saito, M.; Haruyama, Y.; Yasuda, K. Change of concentrations and distributions of aluminum and manganese in tea leaves, Int J PIXE 2013, 23, 13-19.
- [6] Haruyama, Y.; Fujiwara, T; Yasuda, K; Saito, M; Suzuki, K, Localization of Aluminum in Epidermal Cells of Mature Tea Leaves, Quantum Beam Sci. 2019, 3(2), 9. https://doi.org/10.3390/qubs4020019
- [7] Yasuda, K; Yasuda, K; Koka, M; Yamada N; Yamagata, R; Sato, T; Kawachi, N, "Study on aluminum detoxification mechanism of tea plants (*Camellia sinensis*) by measuring trace element distribution of tea leaves", 2019 年度連携重 点研究 成果報告書

茶葉におけるセシウムおよびストロンチウムの局所的集積特性の解明 Evaluation of Elemental Concentration and Localization of Cesium and Strontium in Tea Leaves

寺川貴樹#,A), 服部祥尭 A), 佐藤光義 B), 石井慶造 A),B),

江夏昌志⁽¹⁾,山田尚人⁽¹⁾,山縣諒平⁽¹⁾,石井保行⁽¹⁾,佐藤隆博⁽¹⁾,河地有木⁽¹⁾

Atsuki Terakawa #,A), Yoshitaka Hattori A), Mitsuyoshi Sato B), Keizo Ishii A),B), Masashi Koka C), Naoto Yamada C),

Ryohei Yamagata ^{C)}, Yasuyuki Ishii ^{C)}, Takahiro Satoh ^{C)}, Naoki Kawachi ^{C)},

^{A)} Cyclotron and Radioisotope Center, Tohoku University

^{B)} Research Center for Remediation Engineering of Living Environment Contaminated with Radioisotopes,

Tohoku University

^{C)} Takasaki Advanced Radiation Research Institute,

National Institutes for Quantum and Radiological Science and Technology

Abstract

The spatial distribution of cesium and strontium in tea-leaves were evaluated using a micro-PIXE analysis to reveal the characteristics of the concentration and translocation in tea-leaves for these elements, and to study similarities and differences between cesium and potassium or between strontium and calcium. We used tea-leaf samples (Camellia sinensis (L.) Kuntze) which took in cesium and strontium via root absorption or foliar absorption. The results of the micro-PIXE analysis have showed that strontium and calcium concentrate in the leaf samples as small dots while cesium and potassium are almost uniformly distributed. Many dots of strontium and calcium concentration have been observed in different locations.

Keyword: micro-PIXE, tea leaves (Camellia sinensis (L.) Kuntze), cesium, strontium

1. はじめに

福島第一原子力発電所事故による放射性物質の食品汚染に高い関心が寄せられている。セシウム 137 やストロンチウム 90 は半減期が長く、摂取による長期的な内部被ばくが懸念され、特にストロンチウム 90 は骨に集積し体外に排出されにくいため、発がんの原因となる。現在、主食である米の放射性物質による汚染はほぼ検出されない状況ではあるが、食品安全性に対する消費者の関心の高さは変わらない。

米と同様に国内で広く栽培され、日常的に消費される茶についても消費者の関心は同様である。我々は、放射性セシウムおよびストロンチウムに汚染された茶葉から緑茶への元素溶出について、安定元素を用いた実験を実施し、未使用/使用済み茶葉の PIXE分析を行った。その結果、茶葉のセシウム濃度は、使用済みで30~40%減少し緑茶への溶出が確認されたが、ストロンチウム濃度は使用済み後もほぼ変化せず、緑茶へ溶出する濃度はセシウムに比べて極めて低いことが示唆された[1]。

これらの実験結果より、茶葉においてセシウムは イオンや水溶性の化合物の状態で存在し、ストロン チウムは非水溶性の化合物として存在し、それぞれ の元素の茶葉における機能を担っていると解釈され る。さらに、それに伴い茶葉の組織レベル、細胞レ ベルで集積箇所や濃度分布に何らかの違いが現れる のではないかと推察した。

上記の研究背景のもとに、本研究では、マイクロ PIXE 分析を用いて、茶葉の細胞および組織スケール でのセシウム、ストロンチウム集積の共通性、差異 等について、さらに同族元素との類似性や差異の有 無を明らかにすることを目的とし、茶への元素の溶 出度との関連性を解明することを試みる。また、植 物の元素取込みには経根吸収と葉面吸収の異なる経 路がある。原子力発電所事故に関連する植物汚染の 場合、前者は汚染土壌に、後者は事故直後のフォー ルアウトにそれぞれ起因するものであり、移行経路 が異なる条件でのセシウムとストロンチウムの集積 特性の差異や類似性を解明することも大変興味深い。 よって、本研究では経根吸収と葉面吸収の条件で栽

Figure 1. Cultivation of tea plants under the rootabsorption (left) and foliar-absorption (right) conditions. When the foliar application was performed, the pods were covered with plastic sheets to prevent the solution from seeping into the soil.

培した茶葉サンプルを用いてマイクロ PIXE 分析を 実施する。

#atsuki.terakawa@tohoku.ac.jp

2. 実験方法

2.1 茶葉試料

PIXE 分析用の茶葉試料採取のために、市販のやぶ きた茶の苗木(Camellia sinensis (L.) Kuntze)と園芸 用土壌を用いて鉢植え栽培した(Figure 1)。セシウ ムおよびストロンチウムを茶木に移行させるために 安定セシウムおよびストロンチウムの塩化セシウム と塩化ストロンチウム(CsCl と SrCl₂、和光純薬(株)) を用い、経根吸収と葉面吸収の異なる条件で茶木を 栽培した。

経根吸収条件では、塩化セシウムと塩化ストロン チウムを一様に添加した土壌で茶木を栽培(サンプ ル数3)した。添加量は、過去に報告されている移行 係数[2]を仮定し、PIXEで容易に検出可能な濃度とし て 300 μ g/g 程度になるように決定した。Table 1 に各 化合物の土壌への添加量を示す。 栽培開始 30 日後、 茶葉 10~15 枚(3 g 程度)を無作為に採取した。

また、葉面吸収条件では、葉面吸収の移行係数を 0.01 と仮定し、茶葉内で300 µg/g 程度の濃度になる ように塩化セシウムと塩化ストロンチウムの混合溶 液を作成し、茶樹の上部から霧吹きを用いて約15 ml 噴霧した(サンプル数3)。Table 2 に各化合物の水 への溶解量を示す。噴霧時に溶液が土壌に浸透しな いように鉢をビニールで覆った。噴霧 24 時間後に、 茶葉10~15 枚(3 g 程度)を無作為に採取した。

Table 1. Additive amount of CsCl and SrCl₂ in the soil for the root absorption.

	CsCl	SrCl ₂
Additive amount per 1-kg soil	38.0 g	9.1 g

Table 2 The amount of CsCl and SrCl₂ dissolved in water for foliar application.

CsCl	SrCl ₂
43.6 g / (1 L water)	104.9 g / (1 L water)

2.2 マイクロ PIXE 分析

茶葉試料のマイクロ PIXE 分析は、量子科学技術 研究開発機構 高崎量子応用研究所 TIARA で行った。 3 MV シングルエンド静電加速器[3]から得られる 3 MeV 陽子ビームおよびマイクロ PIXE 分析システム [4]を用いた。マイクロビームのサイズは水平方向 0.9 µm、垂直方向 1.0 µm で、ビーム強度は約 30 pA で あった。X 線検出器は低エネルギー用と高エネルギ 一用の2 台を用いた。低エネルギー用検出器は検出 素子面積 30 mm²の Si(Li)検出器で、試料から 22 mm の距離の散乱層内後方角に設置した。また、高エネ ルギー用検出器は検出素子面積 250 mm²の HPGe 検 出器で、試料直後の 5mm の距離に設置した。なお、

Figure 2. Energy spectra for X-rays from the tea-leaf sample with foliar-applied Cs and Sr measured using the Si(Li) detector (top) and the HPGe detector (bottom).

ビームは試料中で停止する。茶葉試料は乾燥状態で、 アクリル製の専用試料フォルダーにポリカーボネー トフィルムを用いて固定された。試料フォルダーに は直径1mmのビーム通過穴があり、この範囲内で マイクロビームをスキャンし、試料中の各元素に対 して2次元濃度分布(元素マップ)を得ることがで きる。本実験では800×800 µmの範囲でビームスキ ャンした。各試料へは15~30分照射された。

3. 結果および議論

セシウムとストロンチウムが葉面散布され取り込 まれた茶葉試料に対する X線エネルギースペクトル を Figure 2 に示す。Si(Li)検出器では、主要元素とし てもともと茶葉に含まれるカリウムおよびカルシウ ムとともに、セシウムの特性 X 線(L線)が測定さ れた。また、HPGe 検出器では Sr の特性 X 線 (K 線) が測定された。各元素の特性X線のピーク領域にソ フトウェアゲートを設定し元素マップを取得した。 本研究ではアルカリ元素のカリウムとセシウム、お よびアルカリ土類元素のカルシウムとストロンチウ ムについて比較した。なお、セシウムおよびストロ ンチウムを添加しないで栽培したコントロールの茶 葉試料ではセシウムは検出されず、ストロンチウム に関しても土壌中に含まれる天然由来のストロンチ ウムの特性X線は測定されたが、元素マップを作成 できるほどの統計量はなかった。

Figure 3 に、セシウムの経根吸収と葉面吸収の異な る条件で集積した元素マップを同族元素のカリウム の元素マップとともに示す。なお、カリウムはとも に土壌からの経根吸収によるものである。カリウム は植物の必須元素でも特に濃度の高い元素であり、

Figure 3. Comparison of the two-dimensional elemental distribution between the soil-applied or foliar-applied Cs and K absorbed through the roots.

Figure 4. Comparison of the two-dimensional elemental distribution between the soil-applied or foliar-applied Sr and Ca absorbed through the roots.

植物の組織や細胞内で広く分布する。マイクロ PIXE の結果でも葉の組織内にほぼ一様に存在し、著しく 集積するような領域は特に確認されない。セシウム に関してもカリウムと同様に組織内にほぼ一様に分 布しており、局所的な集積は見られなかった。また、 経根吸収と葉面吸収について分布に顕著な差異は認 められなかった。

Figure 4 に、ストロンチウムの経根吸収と葉面吸収

の異なる条件で集積した元素マップを同族元素のカ カルシウムの元素マップとともに示す。カルシウム も土壌由来であり経根吸収による茶葉内の集積であ る。カルシウムの濃度分布はカリウムと大きく異な り、茶葉内にスポット状に集積していることがわか る。この状況はストロンチウムについても同様で、 同程度の大きさのスポット状のストロンチウムの分 布が確認された。経根吸収と葉面吸収では前者の方 がより多くの小さな点状の集積が分布しているよう にも見えるが、X 線収量が少ないため統計的な変動 やバックグラウンドの影響もあり、現状では基本的 に両者に大きな違いはないものと解釈している。一 方、カルシウム集積とストロンチウム集積のそれぞ れのスポット状の位置は、大部分が異なっているこ とが確認された。Figure 4 においてカルシウムを赤、 ストロンチウムを緑で表示すると、同一の場所に集 積している場合は黄色のスポットとして表示される が、そのような集積はかなり少ない。現時点でその 理由は説明できないが、同じアルカリ土類金属でも カルシムとストロンチウムでは、マイクロメートル スケールの集積において、異なるメカニズムの可能 性が PIXE 分析の結果から示唆される。

4. 結論

茶葉から緑茶への可溶性を示すカリウムやセシウ ムは茶葉内にほぼ一様に分布し、局所的に集積する 状況は確認されなかった。一方、難溶性を示すカル シウムやストロンチウムはスポット状に集積し、空 間濃度分布において全く異なる特徴があることがわ かった。これらはカリウム—セシウム間、カルシウ ム—セシウム間の類似性として理解されるが、差異 としては、カルシウムとストロンチウムのスポット 状集積の多くは、同一の場所ではなく異なった場所 に形成されていることが確認された。マイクロメー トルスケールの両者の集積において、異なるメカニ ズムの可能性が示唆される。また、経根吸収と葉面 吸収について、茶葉内の集積に顕著な違いは本実験 では認められなかった。

参考文献

- A. Terakawa, H. Ushijima, K. Ishii, M. Sato, K. Sera, "Elution of Cs and Sr from Tea Leaves (Camellia sinensis (L.) Kuntze) to Green Tea Evaluated by PIXE Analysis", International Journal of PIXE, 28, 93-100, 2018
- [2] 田上恵子、"直接沈着及び経根吸収による放射性核 種の植物への移行"、RADIOISOTOPES, 61, 5, 267-279, 2012
- [3] 田島訓、他、"TIARA 静電加速器施設"、日本原子 力研究所、1996
- [4] 江夏昌志、他、 "軽イオンマイクロビーム分析/加工 システムの改良"、日本原子力研究開発機構、2016