小口径配管の溶接残留応力の解析 Stress Distribution of Small-Bore Butt-Welded Pipe

鈴木賢治^{†,A)}, 三浦靖史 B), 諸岡 聡 C), 菖蒲敬久 C) Kenji Suzuki †A), Yasufumi Miura B), Satoshi Morooka C), Takahisa Shobu C) A) Niigata University B) Central Research Institute of Electric Power Industry

^{C)} Japan Atomic Energy Agency

Abstract

The specimen was a small-bore butt-welded pipe of austenitic stainless steel SUS316 with a thickness of 14 mm. The strain free sample was prepared from the same welded pipe. The lattice spacing in the specimen was measured using a neutron diffraction. The measured positions were the welding line and the HAZ (heat affected zone). The triaxial stresses were obtained by the strain scanning method.

Keyword: residual stress, butt-welded pipe, SUS316

はじめに

近年, 原子力分野において確率論的破壊力学に関 する取り組みが実施され、解析コードの開発も進ん でいる[1]. 確率論的破壊力学による評価において, 溶接残留応力は、その結果に大きく影響する因子で あることは論を待たない. 主に 300A 以下の小口径 配管は、大口径配管と比較して溶接パスが少ないの で、入熱量が少なく残留応力の大きさも小さい傾向 にあるものと推定される.しかし,小口径配管の残 留応力分布が公開された実例はなく, 大口径配管の 残留応力分布[2]を板厚で無次元化したものを代用し ているのが、現状である.

小口径配管の突合せ溶接部の溶接残留応力分布を 実測するにしても、サンプルとしては大きく肉厚で あり,一般の X線応力測定では残留応力の測定は困 難である. 溶接部の粗大なデンドライト組織を指向 性の高い放射光X線で測定することは課題も多い.

以上のことから、本研究では、研究炉 JRR-3 の熱 中性子ビームの回折を使用したひずみスキャニング 法[3]により、小口径配管の突合せ溶接部の残留応力 を測定することを試みた.

2. 実験方法

2.1 材料および試験片

本実験に用いた試験片はオーステナイト系ステン レス鋼(SUS316)の 165A 配管を突合せ溶接したもの である. 配管の寸法は, 外径 165 mm, 内径 137 mm である. 肉厚 14 mm である. 配管の突合せ部に開先 を設け、インサートリングを介して GTAW した後, 残り半分は SMAW で溶接した. 測定に供した突合せ 溶接配管の外観を Fig.1 に示す. 無ひずみ試験片 (d_0) サンプル)の取り出しと中性子ビームを透過させる ために、放電加工により配管に穴を開けている.

ひずみスキャニング法では、無ひずみの格子面間 隔 d_0 を必要とするので、Fig. 2(a)に示すように溶接

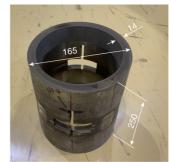


Fig. 1 Specimen of 165A butt-welded pipe.

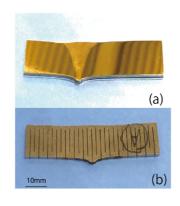


Fig. 2 Sample cut out by electric discharge machining. (a) Welded part, (b) d0 sample.

部を放電加工で取り出したサンプルに, 放電加工で 交互に櫛状にスリットを入れて残留応力を開放した 無ひずみ試験片を用意した. 板厚2mm, ピッチ2mm でスリットを入れている. その無ひずみ試験片を Fig. 2(b) に示す. 写真の手前が溶接底部で突き出ている ところがインサートリングであり,溶接中心に相当 する. 写真の奥が配管外周になる.

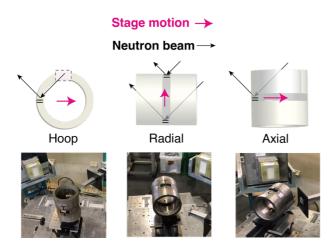


Fig. 3 Experimental configuration for each direction of neutron diffraction.

2.2 中性子応力測定

原子力研究開発機構の研究用原子炉 JRR-3 のウランの核分裂中性子を利用して中性子回折を行う. 核分裂中性子を減速した熱中性子波長 λ =1.71413 Å を用いた. 測定に使用した回折は γ -Fe 311 回折である. 回折角2 θ からブラック条件により結晶格子面間隔dを決定する.

Fig. 3 に示すようにひずみスキャニング法により 円周方向(H), 半径方向(R), 軸方向(A)の格子面間隔 dを測定する. 測定した格子面間隔dと無ひずみの格 子面間隔 d_0 を用いて次式によりひずみ ϵ を求める.

$$\varepsilon = \frac{d - d_0}{d_0} \tag{1}$$

さて、Fig.3に示すように溶接配管を測定方位に合わせて位置決めした後に、試料ステージをスキャニングさせ、回折曲線を逐次測定することにより、ひずみの分布を得ることができる.

ひずみの測定箇所は、Fig. 4 に示すように溶接線 (centre)および溶接線から軸方向に10 mm 離れた位置を熱影響部(HAZ)として測定した. 溶接線箇所については、配管表面から半径方向に深さ2,4,6,8,10,12,14 mm の位置を測定した. また、HAZ については、配管の肉厚が小さいので、配管表面から半径方向に深さ2,4,6,8,10,12,13 mm の位置を測定した.

無ひずみ試験片については、溶接線では3,5,8,11、14 mm の5 点、HAZ の6,12 mm の2 点を測定した.

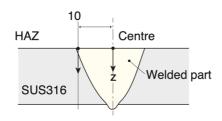


Fig. 4 Measured position in specimen.

また、回折強度を得るために無ひずみ試験片を二枚重ねて測定している.

中性子測定においては、スリットサイズと測定時間が問題となる.方位、スリットサイズおよびラジアルコリメータの計測時間は次のようになる.

溶接線と HAZ の H 方向は、スリット 3×3 mm、各 3 h. 溶接線 R 方向は、スリット 2×15 mm、測定分(位置)は、30(2),40(4),60(6),90(8),60(10),40(12)、30(14). 溶接線 A 方向は、2×15 mm で 2,4,6,8,10、12,14 mm の 7 点を 90 分で測定した.

HAZ の R 方向は、スリット 2×15 mm で 30 (2), 40 (4), 60 (6), 90 (8), 60 (10), 40 (12), 30 (13). HAZ の A 方向はスリット 2×15 mm で、2,4,6,8,10,12,13 mm の 7 点を 90 分で測定した.

なお, R 方向の測定においては, 測定位置が深くなると, 中性子ビームのパスが長くなるので, 2 から8 mm までは中性子ビームを外側から照射し, それより深い位置は反転して内側から中性子ビームを照射している(Fig. 3 参照).

3. 実験結果および考察

3.1 無ひずみの格子定数

 γ -Fe の 311 の測定した回折曲線を gnuplot でガウス近似して回折角度2 θ_0 を求め、回折格子面 d_0 を決定した.配管の残留応力測定においても同様の処理を行い、格子面間隔を決定している.

波形処理により得られた溶接線および HAZ の回

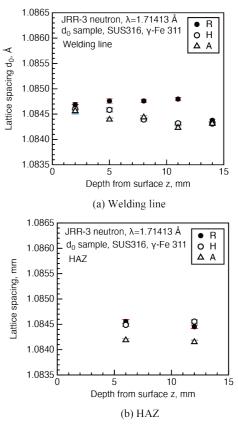


Fig.5 Measured lattice spacing of strain free sample.

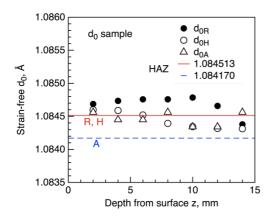


Fig. 6 d_0 -values for welded specimen.

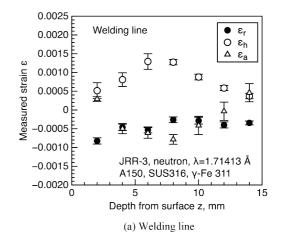
折格子面間隔 d_0 の関係を Fig. 5 にまとめて示す.これらの結果を見ると溶接線上においては、無ひずみの格子定数 d_0 が位置 z により変化して、それにはランダムではなく傾向がある.一方、HAZ 部では無ひずみの格子定数 d_0 に位置 z による変化はないが、格子面方位による差がある.特に、軸方向の格子面間隔 d_0 が他の方位より小さい方にシフトしている.

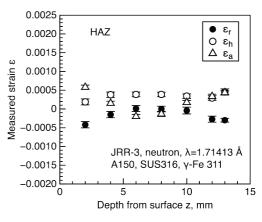
HAZ 部は半径および円周方向はほぼ等しい値を取り、かつ位置 z による差がないので、平均した同一の d_0 を利用できる。しかし、軸方向は、半径および円周方向の d_0 と食い違うが、位置による差異はないので、軸方向の平均値を d_0 とした。溶接線の d_0 測定結果は、測定方位、位置により傾向もそれぞれ異なるので、 d_0 を個別に設定することにした。その結果をまとめると、Fig. 6 になる.

以上のことから、無ひずみの格子面間隔 d_0 は、次のように定義する.

- ・溶接線では、各測定結果から直線で外挿して各方位で位置 z における d_0 を決定する(Fig. 6 にプロットで表記).
- ・HAZ では、各方位の平均値を d_0 とする(Fig. 6 中に線で表記).

Fig. 6 に示した d_0 を用いて各方位のひずみを計算した。


3.2 溶接配管の残留応力分布


さて、Fig. 6 に示した d_0 を用いて式(1)により、R、H、A 方位のひずみ ϵ_r 、 ϵ_h 、 ϵ_a を求めた。その結果をFig. 7 に示す。溶接部では配管外表面から内部に向かって、半径方向ひずみ ϵ_r は圧縮側にあり、円周方向ひずみ ϵ_h は圧縮側にあり、内部で大きな引張を示している。軸方向ひずみ ϵ_a は表面で引張り、内部で圧縮の後、配管内面で再び引張りになる。

HAZ 部では、各方位のひずみの大きさは小さくなるが、その傾向は溶接部と同様である.

これらの測定されたひずみ ε_r , ε_h , ε_a を用いて, 三軸応力 σ_r , σ_h , σ_a を求める必要がある. ひずみから応力を求める関係式は次式で与えられる.

$$\sigma_r = \frac{E}{1+\nu} \left[\varepsilon_r + \frac{\nu}{1-2\nu} \left(\varepsilon_r + \varepsilon_h + \varepsilon_a \right) \right] \quad (2)$$

(b) HAZ Fig.7 Distributions of strain measured by neutron.

$$\sigma_h = \frac{E}{1+\nu} \left[\varepsilon_h + \frac{\nu}{1-2\nu} \left(\varepsilon_r + \varepsilon_h + \varepsilon_a \right) \right] \quad (3)$$

$$\sigma_a = \frac{E}{1+\nu} \left[\varepsilon_a + \frac{\nu}{1-2\nu} \left(\varepsilon_r + \varepsilon_h + \varepsilon_a \right) \right]$$
 (4)

これらの式のヤング率 E およびポアソン比v は γ -Fe, 311 回折の回折弾性定数であり,SUS316 の単結晶のスティフネスは文献[4] から引用して c_{11} = 206 GPa, c_{12} = 133 GPa, c_{44} = 119 GPa を得た.これらのスティフネスを用いて多結晶体の回折弾性定数を Kröner モデルにより計算した[5].

Fig. 8 (a)および(b)に溶接部および HAZ 部における配管の深さ方向の残留応力分布を示す.残留応力の分布は、Fig. 7 のひずみの分布と同様の傾向を示している.残留応力の分布については、例えば、 σ_h は全体が引張側にあるので、応力のバランスを考慮すると、圧縮の領域も必要である.サンプルの値を機械的に利用してよいのか、検討をする必要がある.

例えば、軸方向のひずみの平均が 0 になるように補正して応力を再計算すると、Fig.9 になる・軸方向応力 σ_a は配管の外面と内面で引張になり、円周方向応力 σ_b は引張側になる・

いずれにしても、 d_0 サンプルの値をどのように扱

[21032]

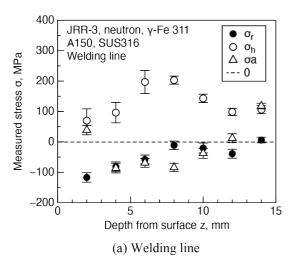


Fig. 8 Distributions of residual stress in welded pipe.

うべきか検討をすることも意義がある。方位による 差がなく,同一の d_0 値が得られる理想的測定法が望まれる。測定している方位ごとの測定した格子定数 に偏りがあるとすれば,形状の影響も考えられる。また,配管の測定値による差異も考えられるので,外周の不均一さを知っておくことも有意義であるである。

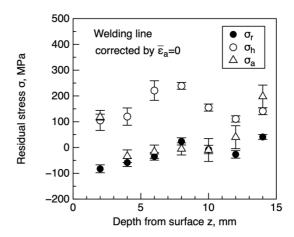


Fig. 9 Distribution residual stress by d_0 -value taking balance into account.

4. まとめ

研究炉 JRR-3 が運転再開し、これまで中断していた残留応力測定装置 RESA-I の利用が可能となり、中性子応力測定ができるようになった.小口径配管の突合せ溶接部と HAZ 部の残留応力分布を測定した.残留応力の分布測定が実施できたことは、成果である.また、無ひずみの格子面間隔の値、格子面間隔の方位による差異が課題として残った.

参考文献

- [1] 小坂部和也,鬼沢邦雄,柴田勝之,鈴木雅秀,原子炉圧 力容器用確率論的破壊力学解析コード PASCAL ver. 2 の開発,日本原子力学会和文論文誌,Vol. 6, No. 2, pp. 161-171 (2007). https://doi.org/10.3327/taesj.J06.052
- [2] 町田秀夫, SCC き裂を有する配管の信頼性に対する非破壊検査性能の影響, 日本機械学会論文集A編, Vol. 77, No. 782, pp. 1798-1813 (2011). https://doi.org/10.1299/kikaia.77.1798
- [3] L. Pintschovius, Neutron diffraction using a constant wavelength, Analysis of Residual stress by Diffraction using Neutron and Synchrotron Radiation, Ed. by M.E. Fitzpatrick and A. Lodini, pp. 133-145 (2003), Taylor & Francis. [1]
- [4] H.M. Ledbetter, British J. NDT, 23, 286 (1981).
- [5] https://x-ray.jsms.jp/kroner/kroner c.html