[22004]

高速クラスターイオン照射誘起2次粒子放出現象の解明と

その物質分析への応用に関する研究

Investigation of secondary ion emission phenomena induced by energetic cluster ion impacts and its application to material analysis

平田浩一

K. Hirata

National Institute of Advanced Industrial Science and Technology

Abstract

Total yields of positive secondary ions induced by sub-MeV C₆₀ ion impacts on an inorganic nano thin film on Si substrate were measured by event-by-event ion counting method. The yield was enhanced by a factor of ca. 2 by increasing the impact energy from 0.06 MeV to 0.36 MeV, and a further energy increase resulted in the saturation of the enhancement.

Keyword: cluster, secondary ions

1. はじめに

固体試料へのイオン照射による2次イオン放出に 関して、単原子イオン照射と比較して、同一元素・ 同一速度のクラスターイオン照射の方が入射原子 1 個当たりに放出される 2 次イオン数が多くなること が報告されている[1]。我々は、この高い2次イオン 放出強度という特性を利用して、クラスター数が比 較的大きく安定である C60 を sub-MeV 〜数 MeV 領域 まで加速し、1 次イオンとして用いた 2 次イオン質 量分析装置の開発を行い[2,3]、分析に有用な2次イ オン強度が高くなること等を報告してきた。今回は、 イオン照射イベント毎の2次イオン放出数を飛行時 間(TOF)型分析器により計数する方法により、数十 keV~1 MeV 程度までの範囲の C₆₀ を照射した際の 正2次イオン相対強度比較を行った結果を報告する。

2. 実験

TIARA の 400 kV イオン注入器で加速した C₆₀イ オンビームをパルス化後、薄膜試料に照射し、TOF型 分析器の末端に設置された MCP 検出器により、入射 パルス毎の2次イオン数を計数した。計数では、2次 イオンが検出された i 番目のパルスでの照射イベン トにおける2次イオン検出個数 piを集計し、2次イ オンが検出された総照射イベント数 N₁と2次イオン 検出総数 N2を得た。また、1 パルスに含まれる最大 イオン数を極力1とするために、パルス化前の直流 ビーム電流を数十fA程度と低く設定した[4]。

3. 結果と考察

照射イオン1個当たりの2次イオン放出個数 nの 平均: μ ,nの分布: $P_n(\mu)$ 、個数分布解析範囲の上限 n_{max} 、 検出効率:γを用いて、計算上の N₂/N₁は、

$$\frac{N_2}{N_1} = \sum_{n=1}^{n_{max}} \frac{P_n(\mu)}{1 - P_0(\mu)} \frac{n\gamma}{1 - (1 - \gamma)^n}$$
(1)

で表すことができる[5]。なお、sub-MeV C₆₀の場合、 $P_n(\mu)$ はポアソン分布で近似できる[6]。ここで、 N_2/N_1 が大きくなると、(1)式の右辺はµγに近付き、N₂/N₁ が 2.6 程度では、(1)式の右辺とμγの差は数%程度で あるため、2.6 程度以上では、 $\mu = N_{\gamma} N_{\gamma}$ と近似できる。 本実験では、2次イオンが放出するイベントは、1個 のイオン衝突により誘起されていると考えられるた め、μは1個のイオン衝突により放出される2次イ オン数となる。また、一連の実験で、γは一定とみな すことができるため、各条件での N2/N1 値から、入射 イオン1個当たりのμを比較することができる。

図1は、0.06 MeV~1.08 MeVのC₆₀イオンをHfO₂ (数 nm 厚)/Si 薄膜試料に照射した際の正 2 次イオ ンのµの相対値(0.06 MeVの値を基準)である。な お、各 N₂/N₁値は 2.6 より大きかった。入射エネルギ ーを増加させると、μ 値の増加が次第に緩やかにな った。C60 照射の場合、入射エネルギーを上げると、 ナノサイズクレータ状の照射による影響範囲が深く なることが報告されている。HfO2の膜厚は数 nm 程 度であることから、照射エネルギーが高くなると次 第に HfO2 膜の部分の下部にある Si 基板からの 2 次 イオン放出の影響が強くなり、μ 値のエネルギー依 存性が、HfO2 膜と Si 基板でのエネルギー依存性の加 重平均的な振舞いになることが一因と考えられる。

参考文献

- [1] K. Hirata et al., Appl. Phys. Lett. 81 (2002) 3669.
- [2] K. Hirata et al., Nucl. Instr. and Meth. B 266 (2008) 2450.
- K. Hirata et al., Rev. Sci. Instrum., 85 (2014) 033107. [3]
- K. Hirata *et al.*, Nucl. Instr. and Meth. B 460 (2019) 161. K. Hirata *et al.*, J. Appl. Phys. 127 (2020) 214302. [4]
- [5]
- [6] K. Hirata et al., J. Chem. Phys. 145 (2016) 234311.