[2023101001]

中性子インビームメスバウアー分光法のノイズ低減 Noise Reduction in Neutron In-beam Mössbauer Spectroscopy

久保謙哉#,A), 小林義男 B), 吉田実生 B), 渡辺裕夫 B), 佐藤渉 C), 宮崎淳 D), 三原基嗣 E), 長友傑 F), M. Kenya Kubo ^{#,A)}, Yoshio Kobayashi ^{B)}, Mio Yoshida ^{B)}, Yasuo Watanabe ^{B)}, Wataru Sato ^{C)}, Jun Miyazaki ^{D)}, Mototsugu Mihara ^{E)}, Takashi Nagatomo ^{F)}

^{A)} International Christian University, ^{B)} University of Electro-Communications, ^{C)} Kanazawa University, ^{D)} Tokyo Denki University, ^{E)} Osaka University, ^{F)} RIKEN

Abstract

Neutron in-beam Mössbauer spectroscopy provides information about the chemical and physical states of the iron atoms containing a highly excited nuclei after nuclear reactions. A new noise reduction method developed in the last ten years for in-beam Mössbauer spectroscopy at a heavy ion accelerator facility is aimed to apply for neutron in-beam Mössbauer spectroscopy. A newly devised measurement system suspended by aluminum frame in the PGA measurement system was installed. A Mössbauer spectrum of a stainless foil was successfully observed.

Keyword: In-beam Mössbauer spectroscopy, ⁵⁷Fe, Neutron

1. はじめに

粒子ビームを用いる物質研究において、中性子を 用いて物質の物理的化学的性質を解明する方法は、 中性子が物質通過中に放射線損傷を与えない、また 荷電粒子の放出がない(n,γ)反応を利用すれば、核反 応後の放射線による変化も少ないため、試料の化学 的性質を損なうことなく、中性子捕獲反応という極 端に高励起された原子核をふくむ原子の起こす科学 反応とその緩和過程を研究できる.ホットアトム化 学として長らく研究が行われていたが、生成物の分 析のために試料を破壊する必要があるため、固体中 でのホットアトム化学の研究はほぼ終了している.

我々は⁵⁶Fe(n,γ)⁵⁷Fe 反応によって生成する寿命 140 ns の 57Fe 励起核を用いるインビーム 57Fe メスバウア ー分光法に着目した.メスバウアーy線は試料を容易 に透過するために、試料を破壊すること無く内部の Fe原子の化学的物理的状態を測定できるという大き な利点があり高励起原子の化学解明に利用すること ができる. 東日本大震災時までに世界唯一の中性子 インビーム⁵⁷Fe メスバウアー分光装置を構築してい た[1-4]. JRR3 停止期間中に重イオン加速器施設 (HIMAC)で、重イオン核反応によって生成する⁵⁷Mn を親核とする 57Fe インビームメスバウアー分光法に おいて,背景β線に起因するノイズを低減して SN 比 を 10 倍改良する手法を開発し[5], 種々の物質に応 用してきた. JRR3 の中性子インビームメスバウアー 分光法においても同様のノイズ低減ができると考え られる.新手法を適用する前に、まず過去の実験デ ータを再現することを試みている.

2. 実験

中性子インビームメスバウアー分光測定は、JRR3 PGAポート筐体内部に測定試料のみならず、メスバ ウアーγ線測定用共鳴内部転換電子検出平行平板電 子雪崩検出器を設置し、高圧電源、信号処理回路な どとの接続やメスバウアー測定用リニアモータ等を 配置する必要がある.長期休止前と比較して、PGA ポートが放射化分析の大幅な利便性向上のための試 料交換ロボットや上部ガイド部分などが設置されて いる.インビームメスバウアー測定装置の設置は PGA 自動化装置の解体と、メスバウアー分光用機器 セットアップと制約された筐体内での幾何学的配置 の工夫,狭い空間での鉛遮蔽の形状変更と設置位置 の適正化,高圧電源および放射線計測系および外部 からの電磁ノイズの対策等,中性子インビームメス バウアー分光法研究開始時と同様な試行錯誤が必要 となった.また PGA 筐体内部はほぼテフロンで内張 されており,種々の機器を再現性よく設置すること が困難なため,試料や測定機器類を筐体上縁部から アルミフレームを用いて懸架する方法を採用した.

3. 結果と考察

インビームメスバウアー分光法は、イベントレートが低く、一つのデータ集積に数時間以上を要するため、一回の設定変更とデータ集積で半日程度の時間を要しながら、種々測定系を改善していくことにより、Fig.1に示すように昨年度よりも SN のよいシングルピークを示すステンレス箔の 57Fe 中性子インビームスペクトルが得られ、過去のデータを再現されつつある.

Figure 1. Neutron in-beam Mössbauer spectrum of a stainless foil.

来年度以降は、物質科学への応用を進めるために、 低温測定用のクライオスタットを設置することと、 重イオンビーム施設で用いているプラスチックシン

[2023101001]

チレータを併用してβ線に起因する雑音を低減する 手法に着手する.

参考文献

- [1] M. K. Kubo et al., Hyperfine Interact., 166 (2005) 425.
- [2] Y. Kobayashi et al., J. Radioanal. Nucl. Chem., 272 (2007) 623.
- [3] Y. Kobayashi et al., Hyperfine Interact., 182 (2008) 1135.
- [4] Y. Kobayashi et al., Hyperfine Interact., 198 (2010) 173.
- [5] T. Nagatomo et al., Nucl. Instr. Meth. B269 (2011) 455.