[2023202004]

中性子照射を模擬したタングステンにおけるプラズマ駆動透過に

及ぼす水素同位体効果

Hydrogen isotope effects on plasma-driven permeation in tungsten simulating neutron irradiation

大矢恭久#,A), 星野柚香 B), 三福寺旭 B), 三浦剣士郎 A), 奥村真郷 A), 早川歩 A), 加用敦也 B) Oya Yasuhisa ^{#,A)}, Hoshino Yuzuka ^{A)}, Sanfukuji Asahi ^{A)}, Miura Kenshiro^{B)}, Okumura Shingo^{B)}, Hayakawa Ayumu^{B)}, Kayo Atsuya^{B)} ^{A)}静岡大学大学院総合科学技術研究科、^{B)}静岡大学理学部

A) Graduate School of Science & Technology, Shizuoka University

^{B)} Faculty of Science, Shizuoka University

Abstract

The hydrogen isotope retention behavior for Fe^{2+} damaged tungsten-tantalum and tungsten-potassium was evaluated by D_2^+ ion implantation and thermal desorption spectroscopy. The D retention at the high temperature side for Fe^{2+} damaged W-Ta was reduced, compared to that for Fe^{2+} damaged W. It can be said that Ta would suppress the formation of voids.

Keyword: tungsten alloy, hydrogen isotope behavior

1. 目的

プラズマ対向材の候補として、高融点、低損耗率、 低水素溶解度等の特性を持つタングステン(W)が挙 げられている。炉運転時、高い熱負荷や、DT 核融合 反応による中性子や高エネルギー粒子の照射による 照射欠陥の形成により、Wの良好な熱・機械特性が 失われ、劣化・脆化を引き起こす。タンタル(Ta)やカ リウム(K)を W に添加することで、これらの特性の 改善が期待されている。先行研究にて W-Ta および W-Kの延性脆性遷移温度の低下、再結晶温度の上昇、 結晶粒の微細化による強度の上昇、優れた耐熱衝撃 性が報告されている[1-3]。しかし、これらの合金に 対する水素同位体挙動に関する報告は少ない。そこ で本研究では、実機環境下を模擬するため、鉄イオ ン照射を行い、照射欠陥を導入した W-Ta および W-K 合金を用いて、水素同位体滞留挙動を評価した。 中性子照射による放射化によって試料の取扱が困難 になるため、鉄イオン照射により照射欠陥を導入し た試料を用いた。

2. 実験方法

実験にはアライドマテリアル社製の直径 6 mm^o、 厚さ 0.5 mm^t の W、W-1,3,5%Ta および W-K(40 ppm) 合金を使用した。この試料に対して、1173 K にて 30 分間加熱処理を行った。その後、高崎量子技術基盤 研究所(TIARA)にて室温で鉄イオン(Fe²⁺)照射を行い、 損傷量を 1 dpa とした。静岡大学にて重水素イオン 照射および昇温脱離法を行い、重水素滞留量を評価 した。重水素イオンはフラックス 1.0×10¹⁸ D⁺ m⁻² s⁻¹、 フルエンス 1.0×10²² D⁺ m⁻² とし、重水素の脱離量は四 重極型質量分析計(QMS)で測定した。

結果・考察

Fig.1 に非照射 W および W-1,3,5%Ta における D₂ TDS スペクトル、Table 1 に各試料における D 滞留量 を示す。非照射試料では、Ta の添加により 350 K~550 K の範囲のピークが増加した。添加する Ta の濃度が 高くなるにつれて、D 滞留量が増加した。W-5%Ta で の D 滞留量は、W の約2倍であった。Ta の水素親 和性によって表面におけるD滞留量が増加したこと が示唆される。

Fig. 1 D₂TDS spectra for undamaged W and W-1,3.5%Ta.

Table 1 Total D retention for undamaged samples.

Fluence : 1.0 × 10 ²² m ⁻²	
Sample	D retention / m ⁻²
undamaged W	3.5 × 10 ¹⁹
undamaged W-1%Ta	4.0×10 ¹⁹
undamaged W-3%Ta	5.9×10 ¹⁹
undamaged W-5%Ta	6.8 × 10 ¹⁹

2023 年度 日本原子力研究開発機構・量子科学技術研究開発機構 施設利用共同研究 一般共同研究 成果報告書

[2023202004]

Fig. 2 に鉄イオン照射 W および W-1,3,5%Ta における D₂ TDS スペクトル、Fig. 3 に Fig. 2 の TDS スペクトルから算出した各照射欠陥における D 滞留量を示す。鉄イオン照射 W-Ta では鉄イオン照射 W と比べて、低温側における D 滞留量がわずかに増加した。Ta の添加により転位ループの形成を促進したことが考えられる。また、W-Ta では W と比べて、高温側の D 滞留量が減少した。Ta の添加によりボイドの形成が抑制されたことが示唆される[4]。

Fig. 2 D_2 TDS spectra for Fe²⁺ damaged W and W-1,3,5%Ta.

Fig. 3 D retention from each irradiation defect.

Fig. 4 に非照射 W および W-K における D₂ TDS ス ペクトルを示す。非照射 W-K では非照射 Wに比べ、 低温側のピークが大きく増加した。K の添加によっ て結晶粒が微細化したことで増加した粒界が重水素 のトラップサイトとして働いたことが示唆される。 Fig. 5 に鉄イオン照射 W および W-K における D₂ TDS スペクトルを示す。鉄イオン照射 W-K では鉄イ オン照射 W に比べ、400 K~550 K にかけて D 滞留量 が大きく増加した。粒界に沿って多数の空孔クラス ターを形成したことが示唆される。

4. まとめ

本研究では W-Ta、W-K 合金を用いて水素同位体 滞留挙動の評価を行った。照射欠陥影響を模擬する ために TIARA にて照射欠陥を導入し、試料への重水 素イオン照射および昇温脱離法を行った。鉄イオン 照射 W-Ta では鉄イオン照射 W と比べ、低温側の D 滞留量が増加した。Ta の添加により転位ループの形 成を促進したことが示唆された。鉄イオン照射 W-Ta では鉄イオン照射 W と比べ、高温側の D 滞留量が 減少した。Ta 添加によりボイドの形成が抑制された ことが示唆された。鉄イオン照射 W-K では鉄イオン 照射 W と比べ、400 K~550 K にかけて D 滞留量が大 きく増加した。K 添加によって多数の空孔クラスタ ーが形成したことが示唆された。

Fig. 4 D₂ TDS spectra for undamaged W and W-K.

Fig. 5 D₂ TDS spectra for Fe²⁺ damaged W and W-K.

参考文献

Nogami S, et al., J. Nucl. Mater. 566 (2022) 153740.
Huang B, et al., J Alloys Compd. 782(2019)149-159.
Nogami S, et al., J Nucl. Mater. 553(2021)153009.
Miyazawa T, et al., J. Nucl. Mater. 575(2023) 154239.