中性子多成分階層構造解析による持続可能社会に向けた材料開発

Analyses of multicomponent hierarchical structures in soft materials

using neutron for a sustainable society 竹中幹人 ^{*A)}、元川竜平 ^{B)}、熊田高之 ^{B)}、中西洋平 ^{A)}、

宮崎司^{C)}、柴田基樹^{C)}、澤田諭^{D)}、近藤寛朗^{D)}、山本勝宏^{E)}、三田一樹^{F)}

Mikihito Takenaka ^{*A)}, Ryuhei Motokawa ^{B)}, Takayuki Kumada ^{B)}, Yohei Nakanishi ^{A)},

Tsukasa Miyazaki ^{C)}, Motoki Shibata ^{C)}, Satoshi Sawada ^{D)}, Hiroaki Kondo ^{D)}, Katsuhiro Yamamoto ^{E)}, Kazuki Mita ^{D)}

^{A)} Institute for Chemical Research, Kyoto University

^{B)} Materials Sciences Research Center, Japan Atomic Energy Agency

^{C)} Office of Institutional Advancement and Communications, Kyoto University

D) Chemicals Evaluation and Research Institute

^{E)} Graduate School of Engineering, Nagoya Institute of Technology

F) Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society

Abstract

Adding silane coupling agents to rubber/silica particles systems improves their mechanical properties and the dispersion of the particles. The improvement is believed to be attributed to the enhanced adsorption of rubber molecules on the surface of silica particles by the silane coupling agent. However, the enhancement of the adsorption by silane coupling agent has not been clarified quantitatively yet. In this study, we have investigated the difference in (i) the adsorption of rubber on silica surfaces and (ii) the aggregation of silica particles in rubber/silica particle systems with and without silane coupling agents by using contrast variation neutron scattering (CV-SANS). The CV-SANS results quantitatively clarified the adsorption layer's thickness and the degree of aggregation for both systems. In the case of the system without silane coupling agents, the adsorption layers do not exist around the particles, and the particles in the system with silane coupling agents, and the addition of silane coupling agents suppressed the aggregation. The tensile experiments explored that the higher breakpoint caused by the existence of the adsorption layers and the enhancement of the linear region induced by the lower aggregation rate.

Keyword: contrast-variation method, small-angle neutron scattering, silane coupling, rubber

1. 緒言

わが国の素材産業は、材料の高機能性を活かして 世界をリードしている。この高機能化は、多成分で 構成された複合材料やコンポジット材料によって実 現されている。わが国の優位性は、製造された多成 分材料の階層構造を精密に解析する技術に基づいた 機能設計にあり、今後もこのビジネスモデルを維持 することが重要である。さらに優位性を高めるため には、構造解析に基づく材料の性能保証だけでなく、 使用環境における耐用年数の保証という価値を提供 することが求められている。例えば、自動車用の有 機/無機コンポジット材料では、その耐用年数の保 証が、開発された材料が川下のメーカーに採用され るかどうかを左右する。したがって、材料が製造さ れてから使用環境下で破壊に至るメカニズムを解明 し、それに基づいて材料の寿命を予測する学理の確 立が急務である。この連携重点研究課題では、中性 子を用いた小角散乱とイメージング技術を組み合わ せた階層構造解析技術を確立し、多成分系の複合材 料やコンポジット材料の広い長さスケールにおける 階層構造の解明を目指している。

このような観点のもと、本年度はゴム充填系の多 成分階層構造に着目した。ゴム製品はタイヤや自動 車用シール部品、絶縁材料など、工業的に重要な材 料として広く利用されている。ゴム製品には、一般 的にカーボンブラックやシリカ粒子などの充填剤が 配合され、機械的特性の向上などが図られている。 シリカ粒子は、タイヤのトレッド部に使用すると転 がり抵抗を低減できるため、近年その使用量が増加 している。しかし、シリカ粒子は、従来の配合手順 ではカーボンブラックに比べて分散性が悪いため、 凝集を避けるためにシランカップリング剤を添加す るのが一般的である。シランカップリング剤は、シ リカ粒子とゴムを化学的に結合させ、シリカ粒子の 周りに吸着層を形成し、この吸着層が、シリカ粒子 の分散性だけでなく、機械的特性も向上させると考 えられている。そこで、本研究では、コントラスト 変調小角中性子散乱(CV-SANS)法[1-5]を用いて、 シランカップリング剤の有無によるスチレン‐ブタ ジエンランダム共重合体ゴム (SBR) /シリカ粒子系 の界面構造の違いを調べ、シランカップリング剤が 吸着層の形成とシリカ粒子の分散にどのような影響 を与えるかを明らかにした。

2. 実験

2.1 試料

ゴム材料には、SBR (JSR1502、JSR 株式会社)を 用いた。シリカナノ粒子 (SEAHOSTER KE-P10、日 本触媒株式会社)、加硫剤としてのジクミルパーオ キサイド (DCP、MilliporeSigma、米国セントルイス)、

シランカップリング剤としてのビス(トリエトキシ シリルプロピル) テトラスルフィド (TESPT、Evonik Si69)は、受領したまま使用した。表1に、2種類の 試料:SBR1 (シランカップリング剤を含まない SBR /シリカ)と SBR2(シランカップリング剤を含む SBR/シリカ)の組成を示す。SBR、シリカナノ粒子、 シランカップリング剤をバンバリーミキサー(東洋 精機製作所) に入れ、140 ℃ で 7~9 分間混練した。 その後、混合物を室温まで冷却した。得られた試料 を再びバンバリーミキサーに戻し、140 ℃ で約5分 間混練した。その後、試料を6インチニ軸ロールミ ル(池田機械工業株式会社)にセットし、DCP を加 えて 50 ℃ で 3~5 分間混練した。試料を 160 ℃ に 加熱してプレス機で加硫し、厚さ 1mm の SBR1 と SBR2 のシートを作製した。試料を、様々な組成の重 水素化ヘキサン (d-hex、Thermo Fisher Scientific Inc.、 米国ウォルサム)と非重水素化ヘキサン(h-hex、富 士フイルム和光純薬株式会社)の混合溶媒に浸漬さ せた。24時間後、膨潤した試料を石英セルに入れ、 SANS 実験に供した。本研究で使用した各成分の中 性子散乱長密度を表2に示す。

Table 1. Composition of the Samples.

Sample	SBR	Silica	DCP	TESPT
SBR1	100	12	2	0
SBR2	100	12	2	6

Table 2. Scattering Length Density (cm⁻²) for Each of the Components.

SBR	Silica	d-hex	h-hex
5.77×10^{9}	3.16×10^{10}	$6.14 imes 10^{10}$	-5.71×10^{9}

2.2 散乱実験

小角中性子散乱 (SANS) 実験は、日本原子力研究 開発機構 (JAEA) の研究用原子炉 JRR-3 (茨城県那 珂郡東海村) にある SANS-J ビームライン[6]を用い て行った。入射ビームの波長は λ =0.65 nm であった。 試料位置におけるビーム径 15 nm はであった。散乱 強度は、³He 位置感応型二次元検出器と光電子増倍 管 (PMT) 検出器を用いて検出した。試料から検出 器までの距離は 1.845 m と 10.245 m で、ここで *q* は 散乱ベクトルの大きさを表し、ブラッグ角 θ を用い て*q* = (4 π / λ) sin(θ /2)で定義されるものである。得 られた散乱データは、円周平均を取り、セルからの バックグラウンド、検出器の電子ノイズ、検出器感 度、インコヒーレント散乱を補正した。得られた SANS プロファイルは、アルミニウム標準を用いて 絶対強度に変換した。

3. 結果と考察

図1に、膨潤した(a) SBR1 および (b) SBR2 に対す る散乱強度プロファイルを示す。いずれの散乱強度 も、d-hex/h-hex の組成によって変化した。ここで、 $q = 0.1 \text{ nm}^{-1}$ に見られるピークは、シリカ粒子の形状 因子に起因する。SBR1 のピーク位置は組成にほぼ非 依存であるのに対し、SBR2 のそれは溶媒組成によっ て変化する。これは、SBR2 における吸着層の存在を 示唆している。

Figure 1. SANS profiles of (a) SBR1 and (b) SBR2. The inset indicates the solvent ratio of d-hex/h-hex.

これらの散乱強度プロファイルから、部分散乱関数(図 2)を算出した。上記のシリカ充填系は、シリカ(S)、SBR(高分子、P)、ヘキサン(H)の三成分系とみなすことができる。よって、非圧縮条件のもとで、散乱強度 *I*(*q*)を

$$I(q) = (a_{\rm S} - a_{\rm H})^2 S_{\rm SS}(q)$$
 -

 $(a_{\rm S} - a_{\rm H})(a_{\rm P} - a_{\rm H})S_{\rm PS}(q) + (a_{\rm P} - a_{\rm H})^2S_{\rm PP}(q)$ と表すことができる。ここで、 a_i は各成分の散乱長密 度を意味する。また、 $S_{\rm SS}(q)$ と $S_{\rm PP}(q)$ はそれぞれシリ カ粒子の自己相関項と SBR のそれを表し、 $S_{\rm PS}(q)$ は 両者の交差相関項である。それぞれの部分散乱関数

を、特異値分解法による疑似逆行列の算出を通じて 求めた。

Figure 2. Partial scattering functions of (a) SBR1 and (b) SBR2. The black lines indicate the fitting results.

これらの部分散乱関数に対してモデルフィッティ ング(図 2 の実線)を行い、凝集体の構造情報を抽 出した。SBR1 に対しては、部分散乱関数は式 $S_{PS}(q) = -\varphi_m S_{SS}(q)$ $S_{SS}(q) = n[(1-p)\langle F_{\alpha}(q)^2 \rangle$ $+ p(\langle F_{\alpha}(q)^2 \rangle + \langle F_{\alpha}(q) \rangle^2 (\mathcal{F}(q) - 1))]$ $S_{PP}(q) = \varphi_m^2 S_{SS}(q) + S_{PP,th}(q)$ で表されるものとした。ここで、 φ_m は膨潤した網目 携先における真公子の体積公室、たけシリカ粒子の

構造における高分子の体積分率、n はシリカ粒子の 数密度、p は凝集によって一対となっているシリカ 粒子の割合である。また、 $F_{\alpha}(q)$ は球の散乱関数であ り、その半径rを用いて

 $F_{\alpha}(q) = 4\pi r^{3} [\sin(qr) - qr \cos(qr)]/(qr)^{3}$ で表される。また、山括弧は平均を意味しており、 ここでは平均値 r_{0} 、標準偏差 σ を用いて正規分布 $D(r) = (1/\sqrt{2\pi\sigma}) \exp[-(r-r_0)^2/2\sigma^2]$ を仮定している。また、 $\mathcal{F}(q)$ は凝集に係る相関を意味しており、吸着層の厚さ h と粒子間距離の標準偏 差 $\sigma_a = 2\sigma$ を用いて

$$= 1 + \sqrt{\frac{2}{\pi \sigma_a^2}} \int_0^\infty \frac{\sin q(t+2r+2h)}{q(t+2r+2h)} \exp\left(-\frac{t^2}{2\sigma_a^2}\right) dt$$

で表される。また、 $S_{PP,th}(q)$ は Debye-Bueche 関数と Ornstein-Zernike-Debye 関数の和で記述し、 Ξ と ξ を それぞれ架橋の疎密に依存する不均一構造の大きさ と、網目のメッシュサイズとした。

SBR2 に対しては、部分散乱関数が

$$S_{SS}(q) = n[(1-p)\langle F_{\alpha}(q)^{2} \rangle + p\langle F_{\alpha}(q)^{2} \rangle \mathcal{F}(q)]$$

$$S_{PS}(q) = n(1-p)[(\varphi_{l} - \varphi_{m})\langle F_{\alpha+\beta}(q)F_{\alpha}(q) \rangle - \varphi_{l}\langle F_{\alpha}(q)^{2} \rangle] + np[(\varphi_{l} - \varphi_{m})\langle F_{\alpha+\beta}(q)F_{\alpha}(q) \rangle - \varphi_{l}\langle F_{\alpha}(q)^{2} \rangle] \mathcal{F}(q)$$

$$S_{PP}(q) = n(1-p)[(\varphi_{l} - \varphi_{m})^{2}\langle F_{\alpha+\beta}(q)^{2} \rangle - 2\varphi_{l}(\varphi_{l} - \varphi_{m})\langle F_{\alpha+\beta}(q)F_{\alpha}(q) \rangle + \varphi_{l}^{2}\langle F_{\alpha}(q)^{2} \rangle] + np[(\varphi_{l} - \varphi_{m})^{2}\langle F_{\alpha+\beta}(q)^{2} \rangle - 2\varphi_{l}(\varphi_{l} - \varphi_{m})\langle F_{\alpha+\beta}(q)F_{\alpha}(q) \rangle + \varphi_{l}^{2}\langle F_{\alpha}(q)^{2} \rangle]\mathcal{F}(q) + S_{PP,th}(q)$$

で表されるものとした。ここで、 φ_l は吸着層に存在 する高分子の体積分率であり、 $F_{\alpha+\beta}(q)$ は

 $F_{\alpha+\beta}(q)$

 $\mathcal{F}(a)$

$$=\frac{4\pi(r+h)^{3}\{\sin[q(r+h)]-q(r+h)\cos[q(r+h)]\}}{[q(r+h)]^{3}}$$

で表される。いずれの理論部分散乱関数も、実験値 とよく一致した。

図 3 に、SBR1 および SBR2 の内部構造を模式的に 示す。凝集状態については、SBR1 ではシリカ粒子の 61%が凝集体を形成しているのに対し、SBR2 では 23%に抑制されているという結果を得た。これは、シ ランカップリング剤がシリカ粒子の分散性を向上さ せる効果を持つことを示唆している。また、SBR1 で は吸着層は確認されなかったが、SBR2 では約 5.3 nm の厚さの吸着層が確認された。これは、シランカッ プリング剤がシリカ粒子表面に吸着し、SBR との親 和性を高めているためだと考えられる。加えて、 SBR1とSBR2のネットワーク構造を比較すると、メ ッシュサイズはほぼ同等だが、SBR2の方が不均一性 の度合いが大きいという結果が得られた。これは、 SBR2 に含まれる未反応のシランカップリング剤が、 非極性溶媒であるヘキサン中で濃度揺らぎを起こし、 不均一な構造を形成するためであると考えられる。 また、SBR1 と SBR2 の膨潤度 Q は、実測によりそ れぞれ 1.6、1.9 と求められ、そこから算出した SBR の体積分率 $\varphi_{m,Q}$ はそれぞれ 0.59、0.48 であった。し かし、これらの値は SANS 測定から得られたマトリ ックス中の SBR 体積分率 φ_m (SBR1: 0.43、SBR2: 0.37) とは異なっている。この乖離は、ポリマーネットワ

は均質であると仮定しているが、実際には未反応の シランカップリング剤や架橋点の偏りなどによって 不均一な構造が生じている。特に、SANS フィッティ ングで得られた Debye-Bueche 項は、ポリマーネット ワーク中の濃度揺らぎを表しており、SBR2 では SBR1 に比べて大きな値を示した。これは、SBR2 に 含まれる未反応のシランカップリング剤が、非極性 溶媒であるヘキサン中で濃度揺らぎを起こし、不均 ーな構造を形成するためと考えられる。このネット ワーク構造の不均一性により、試料中には膨潤度の 低い領域(高密度領域)が存在することになる。そ のため、上記の乖離が生じるといえる。

Figure 3. Schematic illustration of the structure in (a) SBR1 and (b) SBR2 in hexane.

4. 結言

本研究では、シランカップリング剤の有無が SBR /シリカ粒子系の界面構造に与える影響を、CV-SANS 法を用いて検討した。その結果、シランカップ リング剤を含まない系では、シリカ粒子界面に吸着 層は存在せず、粒子は凝集する傾向が見られた。 方、シランカップリング剤を含む系では、粒子界面 に約5nmの吸着層が形成され、シランカップリング 剤の添加により凝集が抑制されることが明らかとな った。さらに、膨潤実験と SANS 実験の結果を比較 することで、ポリマーネットワーク構造の不均一性 について考察した。その結果、試料中にはネットワ ーク構造の不均一性によって生じる、膨潤度の低い 領域が存在することが示唆された。これらの知見は、 シランカップリング剤が SBR/シリカ粒子複合材料 のミクロ構造を変化させ、その結果、機械的特性に 影響を与えることを示唆するものである。得られた 一連の成果は、高性能な SBR/シリカ粒子複合材料 の開発に貢献するという点で、本研究課題の目的に 資するものであるいえる。

参考文献

- [1] T. Koga, T. Hashimoto, M. Takenaka, K. Aizawa, N. Amino, M. Nakamura, D. Yamaguchi, S. Koizumi, New Insight into Hierarchical Structures of Carbon Black Dispersed in Polymer Matrices: A Combined Small-Angle Scattering Study, Macromolecules 41(2) (2008) 453–464. DOI: 10.1021/ma0718671
- [2] H. Endo, J. Allgaier, G. Gompper, B. Jakobs, M. Monkenbusch, D. Richter, T. Sottmann, R. Strey, Membrane

decoration by amphiphilic block copolymers in bicontinuous microemulsions, Phys. Rev. Lett. 85(1) (2000) 102–105. DOI: 10.1103/PhysRevLett.85.102

- [3] H. Endo, M. Mihailescu, M. Monkenbusch, J. Allgaier, G. Gompper, D. Richter, B. Jakobs, T. Sottmann, R. Strey, I. Grillo, Effect of amphiphilic block copolymers on the structure and phase behavior of oil-water-surfactant mixtures, J. Chem. Phys. 115(1) (2001) 580–600. DOI: 10.1063/1.1377881
- [4] H. Endo, D. Schwahn, H. Colfen, On the role of block copolymer additives for calcium carbonate crystallization: small angle neutron scattering investigation by applying contrast variation, J. Chem. Phys. 120(19) (2004) 9410-23. DOI: 10.1063/1.1691736
- [5] S. Miyazaki, H. Endo, T. Karino, K. Haraguchi, M. Shibayama, Gelation Mechanism of Poly(Nisopropylacrylamide)–Clay Nanocomposite Gels, Macromolecules 40(12) (2007) 4287–4295. DOI: 10.1021/ma070104v
- [6] T. Kumada, R. Motokawa, Y. Oba, H. Nakagawa, Y. Sekine, C. Micheau, Y. Ueda, T. Sugita, A. Birumachi, M. Sasaki, K. Hiroi, H. Iwase, Upgrade of the small-angle neutron scattering diffractometer SANS-J at JRR-3, J. Appl. Crystallogr. 56(6) (2023) 1776-1783. DOI: 10.1107/s1600576723009731