中性子インビームメスバウアー分光法による高励起鉄原子の挙動の研究 Study on the Behavior of Highly Excited Fe Atoms Using In-Beam Neutron Mössbauer Spectroscopy

久保謙哉#,A), 小林義男 B,C), 吉田実生 B), 木本周平 B), 佐藤 渉 D), 宮崎 淳 E), 三原基嗣 F), 渡辺裕夫 B), 長友 傑 C)

M. Kenya Kubo ^{#,A)}, Yoshio Kobayashi ^{B,C)}, Mio Yoshida ^{B)}, Shuhei Kimoto ^{B)}, Wataru Sato ^{D)},

Jun Miyazaki ^{E)}, Mototsugu Mihara ^{F)}, Yasuo Watanabe ^{B)}, Takashi Nagatomo ^{C)}

^{A)} International Christian University, ^{B)} University of Electro-Communications, ^{C)} RIKEN Nishina Center,

^{D)} Kanazawa University, ^{E)} Tokyo Denki University, ^{F)} Osaka University,

Abstract

In-beam Mössbauer spectroscopy combined with (n, γ) reaction provides information on the physicochemical state and relaxation process of iron atoms, including highly excited nuclei produced in neutron capture process. We aim to apply a novel noise reduction method developed for in-beam Mössbauer spectroscopy at the heavy-ion accelerator facility to neutron in-beam Mössbauer spectroscopy. A newly developed shielding system consisting of an Al frame and a Pb block was introduced to the PGA measurement system. Mössbauer spectra of ⁵⁷Fe under thermal neutron irradiation into stainless-steel and α -Fe were measured.

Keyword: in-beam Mössbauer spectroscopy, ⁵⁷Fe, neutron capture reaction

1. はじめに

中性子捕獲反応では、中性子が物質通過中に放射 線損傷を与えずかつ荷電粒子の放出がないため、核 反応後の放射線による変化が小さく、試料の化学的 性質を損なうことがない。中性子捕獲後に極度に高 励起された原子核をふくむ原子(ホットアトム)の 化学反応やその緩和過程は、通常の熱平衡にある化 学反応とは異なり、化学結合の解離やエキゾチック な化学種を生成することが明らかとされている.ホ ットアトムの気相および液相における化学的挙動は 理解されているが、固相では生成物の分析のために 試料を破壊する必要があるため化学的効果はまだ十 分に解明されていない.固体中の励起原子の化学的 挙動は、原子力施設で使用される材料に対する放射 線の影響を理解する上でも重要である.

我々は ⁵⁶Fe(n, γ)⁵⁷Fe 反応によって生成する寿命 140 ns の ⁵⁷Fe 励起核を用いるインビーム ⁵⁷Fe メスバ ウアー分光法に着目した.メスバウアー γ線は試料 を容易に透過するために,試料を破壊すること無く 内部の Fe 原子の化学的物理的状態を測定できると いう大きな利点があり高励起原子の化学解明に利用 することができる.東日本大震災時まで,世界唯一 の中性子インビーム ⁵⁷Fe メスバウアー分光装置を JRR3 PGA ポートに構築していた[1-4].JRR3 停止期 間中は,QST の重イオン加速器施設 HIMAC で,重 イオン核反応によって生成する短寿命不安定核⁵⁷Mn ($T_{1/2}$ = 89 s)を親核とする ⁵⁷Fe インビームメスバウ アー分光を行った.⁵⁷Mn は β 壊変核種で β線を放出 する.この β線はインビーム・メスバウアースペク トルを測定する際のバックグラウンドとなり、スペ クトルの質を著しく低下させる。我々は、β線由来 のノイズをプラスチックシンチレータで低減してス メスバウアーペクトルの S/N 比を 10 倍以上向上す る手法を開発し[5]、⁵⁷Mnを用いたインビーム・メス バウアー分光を多くの物質に応用してきた[6-12]. JRR3 の中性子インビームメスバウアー分光法にお いても同様のノイズ低減ができると考えられる.新 手法を適用する前に、まず過去の実験データを再現 することを試みるために鉛遮蔽材でγ線検出器を囲 んだセットアップで実験を行なった.

2. 実験

中性子インビームメスバウアー分光測定は, JRR3 PGA ポートで行なった. 筐体内部に測定試料および メスバウアーγ線測定用検出器を設置した. γ線検 出器は,平行平板電子雪崩検出器(PPAC)と呼ばれ る自作のガス充填型共鳴検出器を用いた. これはメ スバウアー効果により放出された内部転換電子を検 出するものである. PPAC に高圧電源,信号ケーブル を接続し,ドップラーエネルギーを加減するトラン スジュサに固定した. ステンレススティール箔 (SS316)とα-Fe 箔を測定試料に用いた。実験セット アップを Fig.1 に示す.

長期休止後に PGA ポートには放射化分析の大幅 な利便性向上のための試料交換ロボットや上部ガイ ド部分などが設置されている.インビームメスバウ アー測定装置の設置は PGA 自動化装置の解体と、メ スバウアー分光用機器セットアップと制約された筐

[2024101001]

体内での幾何学的配置の工夫,狭い空間での鉛遮蔽 の形状変更と設置位置の適正化,高圧電源および放 射線計測系および外部からの電磁ノイズの対策等, 中性子インビームメスバウアー分光法研究開始時と 同様な試行錯誤が必要となった. PGA 筐体内部は ほぼテフロンで内張されており,種々の機器を再現 性よく設置するため,試料や測定機器類を筐体上縁 部からアルミフレームを用いて懸架した.

Fig. 2. Experimental setup for neutron in-beam Mössbauer spectrometry at the PGA port in JRR3.

3. 結果と考察

インビーム・メスバウアー分光法は、イベントレ ートが約1.0 cps と低く、一つのデータ集積に数時間 以上を要する.実験条件の設定変更とその条件での データ集積で半日程度の時間を要しながら、種々測 定系を改善した.室温で得られた SS 箔のメスバウア ースペクトルを Fig.2 に示す。

Fig. 2. Neutron in-beam Mössbauer spectrum of a stainless foil.

シングルピークとして解析したところ,線幅は 0.64(2) mm/s で通常の透過法で得られる線幅に比べ て 70%広い値となった。この拡がりは、中性子捕獲 によって誘起された格子欠陥によるものと考えられ る.α-Feでは磁気分裂と思われる複数の吸収線を観 測した。詳細は現在解析中であるが、今回の実験結 果は、2025 年 9 月にポーランドの Gdansk で合同開 催される「メスバウアー効果の応用に関する国際会 議および超微細相互作用の応用に関するに関する国 際会議(ICAME&HYPERFINE 2025)」で発表する.

次年度以降は、物質科学への応用を進めるために、 低温測定用のクライオスタットを設置することや重 イオンビーム施設で用いているプラスチックシンチ レータを併用してバックグラウンドをもたらすノイ ズを低減する最善な手法を検討している.

参考文献

- [1] M. K. Kubo et al., Hyperfine Interact., 166 (2005) 425.
- [2] Y. Kobayashi et al., J. Radioanal. Nucl. Chem., 272 (2007) 623.
- [3] Y. Kobayashi et al., Hyperfine Interact., 182 (2008) 1135.
- [4] Y. Kobayashi et al., Hyperfine Interact., 198 (2010) 173.
- [5] T. Nagatomo et al., Nucl. Instr. Meth. B269 (2011) 455.
- [6] Y. Yamada et al., Chem. Phys. Lett., 567 (2013) 14.
- [7] J. Miyazaki et al., J. Radioanal. Nucl. Chem., 303 (2015) 1473.
- [8] S. Tanigawa et al., Hyperfine Interact., 237 (2016) 72.
- [9] Y. Yamada et al., Hyperfine Interact., 239 (2018) 25.
- [10] Y. Yamada et al., Hyperfine Interact., 241 (2020) 15.
- [11] Y. Sato et al., App. Rad. Iso., 170 (2020) 109582.
- [12] Y. Kobayashi et al., Hyperfine Interact., 243 (2022) 13.