[H27-05]

燃料デブリ特性及び事故廃棄物に関する基礎基盤研究

Fundamental Research on Property of Fuel Debris and Waste from the Accident

岡本孝司^{#,A)}, 長谷川秀一^{A)}, 近藤雅裕^{A)}, Koji Okamoto ^{#,A)}, Shuuichi Hasegawa ^{A)}, Masahiro Kondo ^{A)} ^{A)} Nuclear Professional School, University of Tokyo,

Abstract

Melting phenomena caused by eutectic reaction of B4C and SS was visualized.

Keyword: guideline, layout, font

1. はじめに

1.1 制御棒材料の共晶溶融

BWR における制御棒の溶融進展および溶融物落 下挙動の評価は、BWR 安全性向上と福島第一原子力 発電所の廃炉作業において非常に重要である。沸騰 水型原子炉に関する過酷事故研究は少なく、1F 事故 の解明には至っていない。特に、ステンレス鋼(以 下、SS)とボロンカーバイド(以下、B4C)の共晶 反応による制御棒の溶融落下は過酷事故の早期に生 じると考えられており、その後の過酷事故進展を決 定する大きな要因となりうるため、事故解明につな がる重要な現象である。円滑で安全な廃炉作業のた めに炉内構造溶融物の分布を詳細に把握することが 重要であるため、実験による現象理解が必須となる。 しかし、ステンレス鋼とボロンカーバイドの共晶反 応による溶融落下溶融落下現象のリアルタイムな実 験データはこれまで作成されてこなかった。

本研究では、超高温環境下の共晶反応可視化手法 を構築し、制御棒材料の溶融落下現象を可視化する ことで、共晶溶融に関する現象の理解に資する。

1.2 ストロンチウム同位体の迅速分析

福島第一原子力発電所事故で漏出した放射性核種 のひとつであるストロンチウム 90 (⁹⁰Sr) はβ崩壊 核種であることと、カルシウムと同じアルカリ土類 金属元素であることから摂取に伴う骨組織等の長期 内部被曝が問題となる。一般的に利用される放射化 学的手法による⁹⁰Sr の分析は⁹⁰Sr とその娘核種イッ トリウム 90 (⁹⁰Y) の放射平衡を作り出すのに2週間 以上の時間を要し、より迅速に多くの試料を分析で きる手法が望まれる。迅速な分析手法としては質量 分析を利用する手法が期待されているが、⁹⁰Y や天然 に多く存在するジルコニウム 90 (⁹⁰Zr) といった同 重体を除去する必要があるほか、豊富に存在する同 位体 ⁸⁸Sr を ⁹⁰Sr から分離できる高い同位体選択性が 求められる。

本研究では、レーザーの特性を活かして元素及び 同位体の選択性に優れた⁹⁰Sr迅速分析手法の開発を 目指し、さらにレーザー冷却されたイオン群を単一 イオンレベルで可視化することにより高感度分析の 実現を図る。

2. SS と B4C の共晶溶融

2.1 試験体系

Fig. 2.1 は、試験体の概略図である。本実験では、 Front-uncovered specimen とこの板状試験体の正面に SS 薄板を取り付けた Front-covered specimen の2種 類を用いて実験を行った。粉末 B4C の充填率は約 45%であり、空隙は空気で満たされている。試験体 温度はKタイプ熱電対で直接測定した。Table 2.1は、 実験条件をしめしている。Case 1 では、 Front-uncovered specimen を上下逆さまに設置し、上 端が最高温度になり下方へ行くに従って温度が低く なるような温度勾配を生じさせた。試験体温度が 1200 °C に達した後は最高温度 1250 °C まで 0.08 ° C/s で昇温した。Case 2 では、「(ア)板状試 験体を用いた可視化実験」と同様に試験体を配置し た。また、実験中は試験体温度を1200°Cで維持し た。Case 2 において「(ア) 板状試験体を用いた可視 化実験」と異なるのは、正面を SS 薄板で覆っている Front-covered specimen を用いている点と試験体の長 さのみである。

(a) Front-uncovered specimen (b) Front-covered specimen (c) Front view of both specimen typesFig. 2.1 Designs of two specimen types and positions of

thermocouples (All units are mm) [1]

 Table 2.1
 Experimental conditions for specimens

Name	Case 1	Case 2
Front condition	Uncovered	Covered
Specimen direction	Upside down	Normal
Temperature	1250 C	1220 C
Height	35 mm	65 mm

2.2 可視化試験の結果

Fig.2.2 は Case 1 の可視化結果であり、Fig. 14 では、 最初に試験体上部で共晶反応が生じていることがわ かる。これは、試験体に上端から徐々に温度が低く なるような温度勾配が生じたことで、温度が最も高 い部分で最もB4CからSSへの拡散したことによる。 490 sにおいて、共晶溶融物が B4C 領域に侵入して おり(Fig. 2.2 内(1))、1090 s においてさらに多くの共 晶溶融物が粉末 B4C に吸収され混合している(Fig. 3 内(2))。690 s から確認される白く光っている部分は ハレーションである(。Fig. 2.2 内(3))。これは、共晶 反応によって生じた溶融物が表面張力によって丸み を帯びタングステンからより多くの光を反射するよ うになったためだと考えられる。また、690s後から は、共晶溶融物が下部へ移行していく挙動を観察す ることができた(Fig. 2.2 内(4))。これは、リロケーシ ョン挙動の一端を観察することができたと考えるこ とができる。「(ア)板状試験体を用いた可視化実験」 との主な違いは試験体に生じた温度勾配である。

「(ア)板状試験体を用いた可視化実験」では、高温 の中心部から低温の両上下端へと温度勾配が生じて いたが、本追加実験では、高温の上部から低温の下 部への温度勾配が生じた。つまり、本追加実験と同 様な温度勾配下の方が流動を伴うリロケーションが 生じやすいと考えられる。

Fig. 2.2 Time-resolved images in front-uncovered case [1]

Fig. 2.3 は Case 2 の可視化結果である。正面の SS 薄 板右に取り付けられた熱電対 (Surface/Right) は途中 試験体から外れてしまったため、他の熱電対と異な る挙動を示しており、信頼性が低いと考えられる。 Fig. 2.3 では、最初に試験体の中心部から溶融が生じ ていることがわかる。これは、試験体の温度勾配が 中心部から両端へ向かって温度が低くなるような勾 配であるためである。加えて、タングステンヒータ ーで試験体の両端から輻射加熱しているため水平方 向の温度勾配は中心部から両端へ向かって温度が高 くなるような勾配であるため、試験体の中心部でも 特に SS 薄板の B4C と接している範囲内の最も外側 から溶融が開始している(Fig. 2.3、600 s、(1))。800 s には、試験体内の B4C が Ar 雰囲気へ露出し始める (Fig. 2.3、(3))。この時、共晶反応によって溶融した SS 薄板は中心部から試験体の右端へと移動する挙 動を示した。900sでは、右端へ移動した溶融物は試 験体に沿って下方へ移動し液滴を形成した(Fig. 2.3、 (4))。900-1100 s にかけて、この液滴に溶融物が流れ ていくことで液滴の大きさは大きくなっていった。 Case 2 では Case 1 で確認された溶融物の B4C 領域へ の侵入・吸収は確認されなかった。むしろ、Case 2 では、溶融物は粉末 B4C にはじかれていた。

Fig. 2.3 Time-resolved images in front-covered case (600–1100 s) [1]

3. Sr 同位体イオンの個別観測

3.1 試験体系

Fig. 3.1 は実験系の全体図である。イオン源並びに 質量分析部として誘導結合プラズマ質量分析装置 ICP-MS (Perkin Elmer, Elan DRC II) を使用した。 ICP-MSはRFコイルにより発生させたアルゴンの誘 導結合プラズマ (ICP) 中に液体試料を導入すること で試料をイオン化し、四重極質量分析器 (Q-mass) によって質量分析を行う装置である。通常の ICP-MS では Q-mass の後段に検出器が置かれ、質量選別され たイオンの検出が行われるが、本装置においてはこ の検出器が取り外され、イオントラップ装置が取り 付けられている。質量選別されたイオンの捕獲を行 う四重極イオントラップは7つのセグメントに分か れており、それぞれに異なる DC オフセットを印加 することで特定のセグメントに捕獲イオンを集積す ることが可能である。捕獲されたイオンはトラップ 内部に照射されたレーザーによって元素・同位体選 択的に冷却され、極低温のイオン結晶が生じる。こ こでは422 nm と 1092 nm の 2 本のレーザーを使用す

[H27-05]

ることで閉じた冷却サイクルを構築している。冷却 されたイオンから放出される 422 nm のレーザー誘 起蛍光(LIF)を EMCCD カメラ及び光電子増倍管 (PMT)によって計測する。

Fig. 3.1 Experimental setup of ICP-MS and Ion Trap.

レーザー冷却において高い冷却効率と同位体選択 性を実現するためにはレーザー周波数の安定性が重 要である。今回使用する外部共振器型半導体レーザ ーは発振周波数が可変であるという利点がある一方 で周波数が外乱の影響によって変化しやすい。そこ で本研究室で構築されたレーザー周波数安定化シス テム(DFOC)[2]を適用した。DFOCのシステム構成を Fig. 3.2 に示す。633 nm 安定化 HeNe レーザーを基準 とし、ファブリペロー干渉計により得られる各レー ザーのフリンジ信号からエラー信号が作成され、フ ィードバック制御が行われる。

Fig. 3.2 Structure of laser frequency control system.

以上のような装置を用いて⁸⁸Sr⁺個別イオンの可視 化を試みた後には、⁹⁰Sr を観測するための新たな装 置を構築する。新たな装置においては、試料からイ オンを得るために共鳴イオン化を利用する。共鳴イ オン化は原子の励起にレーザー共鳴を利用するため、 同位体選択的なイオン化が可能な手法である。共鳴 イオン化されたイオンは Q-mass によって質量分離 され、イオンレンズを経てイオントラップに捕獲さ れ、レーザー冷却される。イオントラップ電極は Fig. 3.1 の装置のようなセグメントではなく、電極間に挿 入された勾配付きの補助電極によって軸方向の電位 勾配を形成し、捕獲されたイオンを特定の位置に集 積する。レーザー冷却光源及び制御システムはこれ までと共通である。装置の構成を Fig. 3.3 に示す。

Fig. 3.3 Experimental setup of RIMS and Ion Trap.

3.2 試験結果

DFOC システムを適用した場合のレーザー周波数 の揺らぎを評価したところ、実験時間に概ね相当す る 1 時間の間で、本研究室の有する波長計 (HighFinesse, WS7)の分解能である 10 MHz を下回 る値であることが確認された。これは Sr⁺冷却遷移の 自然線幅 21.5 MHz に対しても十分小さな値であり、 レーザー周波数が本実験で求められる精度で安定化 されていると言える。続いて前項で示した装置を使 用して Sr⁺捕獲観測実験を行った。試料には 10 ppm の Sr 溶液を使用した。結果として Fig. 3.4 に示すよ うなイオン結晶画像並びにイオン結晶のスペクトル が得られた。画像は EMCCD によって得られたもの であり、スペクトルはイオンが捕獲された状態で422 nm 冷却レーザーの周波数を掃引し、その際の LIF 変 化を PMT によって測定したものである。このスペク トルは冷却スペクトルと呼ばれ、非対称な形状を有 する点が特徴的である。これは冷却レーザーの周波 数が対象イオンの共鳴周波数を越えた時にレーザー による冷却が起こらなくなるためである。

Fig. 3.4 Sr⁺ ion crystal and cooling spectrum.

また、冷却レーザーの周波数を共鳴より高い値に 合わせてレーザー加熱することにより、捕獲イオン 数を減らす操作を行うことができる。このような操 作により Fig. 3.5 に示すようなストリング状のイオ ン結晶が得られる。この画像においてはイオン 4 個 が等間隔で並んだ構造が示されている。以上のよう にイオントラップ・レーザー冷却により単一イオン レベルにおける Sr⁺の観測に成功した。

[H27-05]

Fig. 3.5 String crystal of trapped and cooled Sr⁺ ions.

続いて、共鳴イオン化質量分析とイオントラッ プ・レーザー冷却を利用した新たな装置を構築し、 この装置において Sr^+ の捕獲観測を行った。その結果、 Fig. 3.6 のように Sr^+ が発する LIF が観測され、 Sr^+ の 捕獲が確認された。

Fig. 3.6 LIF obtained from trapped Sr⁺ ions.

4. おわりに

4.1 制御棒材料の共晶溶融

超高温環境下の共晶反応可視化手法を構築し、 制棒材料の溶融落下現象を可視化した。具体的に は、B4C/SS 共晶反応可視化のための実験システム を構築し、板状試験体を用いて溶融挙動を可視化 した。

4.2 ストロンチウム同位体の迅速分析

レーザーを用いた個別イオン観測システムにより Sr⁺イオンの可視化を行った。具体的には ICP-MS と イオントラップ・レーザー冷却により Sr⁺イオン結晶 を形成し、LIF 観測による単一イオンレベルにおけ る可視化を実施した。

参考文献

[1] Shota Ueda, Hiroshi Madokoro, Byeongnam Jo, Masahiro Kondo, Nejdet Erkan and Koji Okamoto, Time-resolved visualization technique for eutectic reaction between boron carbide and stainless steel at high temperatures, Mechanical Engineering Letters 2 (2016), 15-00056.

[2] Kyunghun Jung, Yuta Yamamoto and Shuichi Hasegawa, Development of multiple laser frequency control system for Ca⁺ isotope ion cooling, Hyperfine Interactions 236 (2015), 39-51.