表題: 高温中性子粉末回折による CaYAlO₄ の結晶構造解析 Crystal structure analysis of CaYAlO₄ by high-temperature neutron diffraction

Kazuki Omoto¹, Naoto Kaneko¹, Noyuki Kubo¹, Masatomo Yashima^{1,2}, James Hester³

¹Department of Material Science and Engineering, Interdisciplinary Graduate School of Science and Engineering Tokyo Institute of Technology, Ookayama 2, Meguro-ku, Tokyo, Japan. ²Department of Chemistry and Materials Science, Tokyo Institute of Technology, Ookayama 2, Meguro-ku, Tokyo, Japan. ³Australian Nuclear Science and Technology Organisation (ANSTO), Bragg Institute, Locked Bag 2001, Kirrawee DC NSW 2232, Australia.

1. Introduction

 K_2NiF_4 -type structure $ABCO_4$ (A = Ca, Sr, Ba; B = rare earth; M = Al, Ga) is candidate for applications such as substrate and electrode materials. Crystal structure of CaYAlO₄ has not been studied at high temperature by neutron diffraction so far. In the present work, we have investigated the crystal structure of CaYAlO₄ by high-temperature neutron powder diffraction.

2. Experimental

CaYAlO₄ material was prepared by solid-state reactions. CaYAlO₄ was prepared with stoichiometric mixtures of the CaCO₃, Y₂O₃, Al₂O₃, which were mixed with ethanol in an agate pot and calcined at 1073 K for 8 h in air. The calcined powder was then milled again. After a uniaxial pressing at 50 kPa, the disk was sintered in air at 1673 K for 3 h. The phase purity of CaYAlO₄ was confirmed by X-ray diffraction measurements.

Neutron diffraction experiments were carried out on the Echidna high-resolution powder diffractometer at the OPAL reactor in Sydney, Australia. The neutron wavelength was 1.6602 Å, calibrated against a standard Al₂O₃ sample. The data were collected in the temperature range from 298K to 1473K. The resulting diffraction data were analyzed by the Rietveld method with RIETAN-FP.

3. Result and Discussion

Rietveld analysis of the CaYAlO₄ solid solution was carried out by the tetragonal structure with the *I4/mmm* space group at 298-1473 K. Figure 1 shows the Rietveld pattern of CaYAlO₄ at room temperature. The reliability factors were R_{wp} =7.01%, $R_{\rm B}$ =2.67%, and $R_{\rm F}$ =1.81%. Phase transition was not observed at 298K to 1473K. Unit cell parameters were a = b 3.6420(1)Å, c = 11.8919(5)Å. Unit cell parameter increased with increasing temperature.

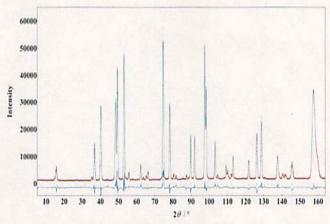


Fig. 1 Rietveld refinements of the neutron powder diffraction patterns of CaYAlO₄ at 298 K.

Acknowledgements

The (Type of experiment) experiment was performed by using (Instrument name) at (Facilty), (Country), which was transferred from (Instrument at JRR-3) with the approval of Institute for Solid State Physics, The University of Tokyo (proposal no. #####), Japan Atomic Energy Agency, Tokai, Japan.