Ochanomizu University Hazuki Furukawa, Mamiko Kure

Background and purpose

It is microscopically confirmed that $ErNi_2B_2C$ exhibits the coexistence of weak ferromagnetism (WFM) and superconductivity below $T_{WFM} \sim 2.5~K$ [1]. For a type II ferromagnetic superconductors, it is predicted that an internal magnetic field H_{int} mediated by the ferromagnetic moments may lead a spontaneous vortex phase if H_{int} satisfies a condition: $H_{c1} < H_{int} < H_{c2}$ [2].

 ${\rm ErNi_2B_2C}$ is one of possible candidates for the spontaneous vortex phase because the estimated $H_{\rm int}$ satisfies the above condition of the spontaneous vortex phase. In this study, SANS experiment was performed in order to examine the possibility of spontaneous vortex phase in ${\rm ErNi_2B_2C}$.

Experimental method and results

The SANS experiment was performed at the Paul Scherrer Institute in Switzerland. The single crystals of $ErNi_2B_2C$ were prepared using floating zone method. The measurements were carried out at T=3 K (spin density wave phase) and T=0.1 K (week ferromagnetic phase).

At 0.1 K after the zero field cooled (ZFC) procedure, the external magnetic field $H_{\rm ext}$ as large as 2000 Oe was applied, and then it was reduced down to 0 Oe. Figure 1 shows the FLL (flux line lattice) diffraction pattern measured at $H_{\rm ext}$ =0 Oe and T= 0.1 K after this procedure. The effective field $H_{\rm eff}$ was calculated from the diffraction patterns obtained at each fields.

Figure 2 shows the field dependence of internal field $H_{\rm int}$ (= $H_{\rm eff}$ - $H_{\rm ext}$). $H_{\rm int}$ is not zero at $H_{\rm ext}=0$ Oe and T=0.1 K although $H_{\rm int}$ is zero at $H_{\rm ext}=0$ Oe and T=3 K, which may suggest the realization of spontaneous vortex lattice. The internal field $H_{\rm int}$ increases at both 3 K and 0.1 K as the external field $H_{\rm ext}$ increases, showing that the magnetic moments at both SDW phase and WFM phase tend to align with the external magnetic field.

Figure 1: FLL diffraction pattern at $H_{\text{ext}}=0$ Oe, T=0.1K

Figure 2: Field dependence of H_{int}

References

- [1] H. Kawano, H. Takeya, H. Yoshizawa and K. Kadowaki, J. Phys. Chem. Solids. 60 (1999) 1053.
- [2] M. Tachiki et. al., Solid State Commun. 34 (1980) 19.